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Abstract
	 In this paper, we propose an explicit formula of the performance for Exponentially Weighted Moving Average 
(EWMA) chart by using the Fredholm integral equation of the second kind and the data are described by trend 
Exponential Autoregressive order p (EAR(p)) model. The performance of the chart is measured by the Average Run 
Length (ARL). The solution is compared with numerical approximations and we found that the computational time 
of the explicit formula takes approximately 1 s while the numerical computations were approximately 10 min.
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Introduction
	 The Exponentially Weighted Moving Average 
(EWMA) chart was first introduced by Robert (1959), 
is often used for detecting the shift in the sequence 
of independent normal distribution data. The chart is used 
for detection the mean over time as they occur. The 
autocorrelation has a large impact on the chart developed 
under the independence assumption. The performance of 
the chart is measured by the average run length (ARL). 
ARL is a widely accepted measure of performance of a 
chart. The ARL0 denote the average number of observations 
before an in-control process is taken to signal to be out 
of control, and the ARL1 denote the average number of 
observations taken from out of control. An appropriate 
scheme provides large ARL0 for in control processes and 
small ARL1 for out of control processes. The EWMA 
chart is based on the EWMA statistic:
		  Zt = (1 - λ) Zt-1+ λYt-1, t = 1, 2, 3, … ; Z0 = z  (1)
	 where Zt is the EWMA value of a statistic after t data, 
z is an initial value for Zt and a smoothing parameter 
λ(0 < λ < 1). Let Yt be an observed value of the trend 
EAR(p) model defined below:
			  Yt = a + bt + ϕ1 Yt-1+ ϕ2Y+...+ ϕpYt-p+ ζt      	 (2)
	 where ɸi be an autoregressive coefficient (-1 ≤ ϕi ≤ 1, 
i = 1, 2, 3, …, p), ζt be an exponential white noise, Yt is 

the trend EAR (p) model when a is a constant, and b is 
the trend slope in term of t. Let c be an upper limit on Zt 
for determining that the process is an out-of-control 
and let the first passage time c be defined as the time at 
the process is an out-of-control process. The process is 
initially out-of-control at τc = 1 by the random data Zt 

over the positive value c is
		  τc = inf (t ≥ 0: Zt ≥ c)			   (3)
	 The ARL of the chart at a given quality value c is 
defined to be expected value of c. The methods for 
calculating the performance of EWMA chart are Monte 
Carlo simulation approach (MC) (Haq et al., 2015; Morais 
et al., 2015; Riaz & Ahmad, 2016; Rabyk & Schmid, 
2016), Markov Chain approach (MCA) (Chang & Wu, 
2011; Huang et al., 2012; Saleh et al., 2013; Zhang et al., 
2014), Integral Equation approach (IE) (Crowder, 1987; 
Calzada & Scariano, 2003, 2004), and analytical approach 
(Areepong, 2009; Mititelu et al., 2010; Suriyakat et al., 
2012). The MC can be used when exact analytical 
formulas are not available. The MCA was first studied 
by Brook and Evans (1972). The IE for the ARL can be 
expressed in terms of Fredholm Integral Equation of 
the second kind by Crowder (1987). The Analytical 
formulas can be easy to calculate and program. The article 
is structured as follows. Section 2 presents EWMA chart 
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and performance. Section 3 presents the uniqueness of 
the solution for the ARL integral equation. Section 4 show 
solution for the integral equation of EWMA Chart with 
the trend EAR (p) model, Section 5 and 6 are the present 
numerical solution to the ARL integral equation and 
conclusions, respectively.

EWMA Chart and Performance
	 The assumption of random variables ζ1, ζ2, ζ3,… is 
identically independent distribution with probability 
density function  f (x, α) where the parameter α = α0 before 
the change point time θ ≤ ∞, at the parameter α changes 
to α1. The parameter does not change from α0 the mean 
that θ ≤ ∞. The f (x,α) is an absolute continuous with respect 
to f (x, α0). The first passage time for this type of chart for 
the statistic Zt defined as in equation (1) is typically

τc = inf(t ≥ 0: Zt ≥ c)
	 where c is a constant parameter known as the control 
limit on the value of Zt.

Uniqueness of the Solution for the ARL Integral 
Equation
	 Mititelu et al. (2010), Busaba et al. (2012), Kanita 
et al. (2014, 2015) proposed the uniquenes s of the solution 
for the ARL integral equation. The ARL of EWMA 
chart at a given level defined as L(u) = ARL = Eτc < ∞, 
the solution  of the following integral equation for the 
case where ζt are continuous distribution i.i.d. random 
variables with exponential distribution given by 
f (x) = (1/α)exp(-x/α), x ≥ 0. The EWMA chart can be 
calculated in term of the Fredholm Integral Equation of 
the second kind by Crowder (1987) is applied below

c- (1 - λ)u - λ(a + b + ∑j=1ϕjY1-j)
λ

p

	 L(u) = 1 + ∫0                                                      L((1 - λ)u + λ(a + b + v ∑j=1ϕj + x)) f (x)dx			  (4)

	 After a change of variable, while the corresponding AR(p) model is υ. Then the following holds

	 L(u) = 1 +       ∫0 L(x) f (   			                   )dx, u ϵ [0, c]					     (5)

	 However, the right-hand side of equation (5) contain only continuous function, it is clear that solution of the integral 
equation (5) is a continuous function. Recall the complete metric space of all continuous function (C(T),|| ||1) where 
I  are a compact interval and the norm defined as ||L|| = supu ϵ I|L(u)|, the operator T is named the contraction it there 
exist a number 0 ≤ q ≤ such that ||T(L1) - T(L2)|| ≤ q||L1 - L2|| for all L1, L2 ϵ C(I). In our case, let T be an operator in 
the class of all continuous function C(I), where I = [0, c] and let T be defined by

	 T(L(u)) = 1 +        ∫0 L(x) f (  		              )dx, u ϵ [0, c]					     (6)

	 Where f (·) is the probability density function of the distribution. Then equation (6) can be written in operator form 
as T(L(u) = L(u). To prove the uniqueness of the solution of equation (6) we first prove the following theorem.

	 Theorem 1 On the metric space (C(I),|| ||∞) with the norm ||L||∞= supu ϵ I|L(u)| the operator T is a contraction.
	 Proof To show that T is a contraction we need to prove that for all u ϵ I and L1, L2 ϵ C(I) we have the inequality 
||T(L1) - T(L2)|| ≤ q||L1 - L2||, where 0 ≤ q ≤ 1. From equation (6) we have

	 ||T(L1) - T(L2)||∞  ≤  supu ϵ [0, c](   ∫0  (L(x1) - L(x2)) f (	            )dx)
						      ≤ ||L1 - L2||∞ supu ϵ [0, c](   ∫0  f (                             )dx )
						      =        ∫0  f  (                             )dx ||L1 - L2||∞
						    
						      = q||L1 - L2||∞
	 where 0 < q = 1/λ∫ f (x- (1 - λ)u - λ(a + b + υ (ϕ1 + ϕ2 + ... + ϕp))/λ)dx < 1.

p
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	 We have used the triangle inequality for norms and the fact that
				    |L1(0) - L2(0)| ≤ supu ϵ [0, c]| L1(x) - L2(x) = ||L1 - L2||
	 So, the unique of the solution is guaranteed by Theorem 1 and the Banach Fixed Point Theorem.

Solution for Integral Equation of EWMA Chart with Trend EAR(p) Model
	 In Theorem 2, we derive explicit formula for ARL of one-sided EWMA chart with the trend EAR(p) model by the 
integral equation. Since Suriyakat et al. (2012) presented the explicit formula for ARL of EWMA chart for AR(1) 
model with exponential white noise. The uniqueness of solution is guaranteed by Theorem 1.
	 Theorem 2 The solution of equation (5) is

		  L(u) = 1 -				                       , u ϵ [0, c].					     (7)

	 Proof We have u ϵ [0, c] that

		  L(u) = 1 +      ∫0  L(x) f (                             )dx.					     (8)

	 The function f (·) can be written as

		  f (				            ) =      exp(                              )		  	 (9)

	 The function L(u) can be written as

		  L(u) = 1 +         ∫0 L(x)exp(-                                  )dx					     (10)

	 Let

		  C(u) = exp(   			  ), u ϵ [0, c]					     (11)

	 Then we can write as

		  L(u) = 1 +          ∫0 L(x)exp (-      )dx							       (12)

	 Let d = ∫0 L(x)exp(-    ) dx. we can obtain

		  L(u) = 1 +          d								        (13)

	 we can express the constant d as

	 	 d = ∫0  L(x) exp (-     ) dx = -							       (14)  

	 where to substitute d into equation (13) the solution for the integral equation is

λexp(       )(exp (-        -1)(1 - λ)u
αλ

c
αλ

λexp(-		               ) + exp(-    )-1
a + b + υ∑j=1ϕj

α

p c
αλ
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		  L(u) = 1 -								        	 (15)

Numerical Solution for Integral Equation of EWMA Chart with Trend EAR(p) Model 
	 In this section, we present a numerical method to evaluate the solution L(u) = Eτc of the equation (5) for ARL of 
the trend EAR(p) model. First, we recall equation (5) in the form

		  L(u) = 1 +      ∫0 L(x) f (                                                  ) dx.					     (16)

	 where f (·) is an exponential distribution function. We can approximate L(u) using the Gauss-Legendre quadrature 
rule as follows:

		  L(ai) ≈ 1 +      ∑j=1wj L(aj) f (                                                  ) , i = 1, 2, 3, ..., m		  	 (17)

	 where wj =      ≥ 0 and aj =      (j - 0.5) ≥ 0 for j =1, 2, 3, ..., m.  The equation (16) then becomes a system of m linear 
of equation (17) in the m unknowns L(a1), L(a2), ..., L(am). For numerical method, it can be written in matrix form as
	 	
		  (Im - Rm×m) Lm = 1m								        (18)
	
	 where Lm×1 = (L(a1) L(a2) ... L(am))' and 

		  Rm×m

				  

		

		  =

	 and Im = diag(1, 1, 1, ..., 1) is the unit matrix of order m. If there exists (Im - Rm×m)-1, then the solution of the 
matrix equation (18) is
		
		  Lm = (Im - Rm×m)-11m 							       	 (19)

	 We can approximate the function L(u) in equation (16) as
		
		  L̄(u) ≈ 1 +      ∑j=1wjL(a) f (                              ),					     (20)

	 where	wj =       and aj =      (j - 0.5) for j = 1, 2, 3, ..., m.    			 
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Numerical Results
	 In this section, we compare the closed form 
expression given in Theorem 2 for L(u) = ARL for the 
EWMA chart when data is the trend EAR(p) model 
with the approximate numerical solution for the 
ARL = L ̅ (u) given in equation (20). We define the 
relative error as a measure of accuracy of the 
comparisons:

		  εr = 

Table 1 Upper limits by explicit formula with λ = 0.25

	 We used equations (15) and (20) to compute the ARL 
for the second order trend autoregressive model
	 (AR(2)) with α = 1, the pairs (ϕ1, ϕ2) considered was 
ρ = ϕ1, ϕ2  corresponding to these pairs are the values of 
λ = 0.25; ρ = 0.05, 0.1, 0.2, 0.3, 0.4; a = 0; b = 0.2; and 
initial value is 1, respectively. All results were performed 
with programs written in the MATLAB software. The 
upper limits for EWMA chart were chosen by given 
desired ARL0 = 500, 1000 are shown in Table 1.
	 Tables 2 and 3 show a comparison of exact and 
numerical solutions for the trend EAR(2) model 
for given ARL0 = 500. In Table 2, we assume λ = 0.25, 
ρ = 0.05, c = 0.2709690 and the number of division 
points in the Gauss-Legendre rule m = 500. For α = 1 the 
process is in control whereas for α > 1 the process is out 
of control. In Table 3, we assume λ = 0.25,  ρ = 0.2, 
c = 0.2285049 and the number of division points in the 
Gauss-Legendre rule m = 500. The results obtained 
from both methods are again in good agreement 
with less than 0.04 relative errors for the range of 
the values. The CPU time based on the exact solution 
take less than 1 second while the numerical integral 
equation takes approximately 10 minutes.

Table 2 Comparison of ARL1 values for the trend 
				    EAR(2) model from explicit (Exact) formula 
				    and numerical approximation (IE) for 
				    ARL0 = 500, c = 0.2709690, λ = 0.25 and 
				    m = 500

Table 3 Comparison of ARL1 values for the trend EAR(2) 
			   model from explicit (Exact) formula and 159 
			   numerical approximation (IE) for ARL0 = 500, 
			   c = 0.2285049, λ = 0.25 and m = 500

	 Tables 4 and 5 show a comparison of exact and 
numerical solutions for the trend EAR (2) model for given 
ARL0 = 1000. In Table 4, we assume λ = 0.25, ρ = 0.05, 
c = 0.2712625 and the number of division points 
in the Gauss-Legendre rule m = 500. For α = 1 the process 
is in control whereas for α > 1 the process is 164 out 
of control. In Table 3, we assume λ = 0.25, ρ = 0.2, 
c = 0.2287596 and the number of division points 165 in 
the Gauss-Legendre rule m = 500.

|L(u) - L̄ (u)|
L(u)

0.05

0.2709690

0.2712625

ARL0

500

1000

0.1

0.2555894

0.2561741

0.2

0.2285049

0.2287596

0.3

0.2043548

0.2458660

0.4

0.1829966

0.1832074

ρ

1.01

1.03

1.05

1.07

1.10

1.30

1.50

77.6699

29.4613

18.4689

13.5995

9.8829

3.9911

2.7980

77.5616

29.4127

18.2244

13.3409

9.8329

3.8656

2.6983

0.0014

0.0016

0.0132

0.0190

0.0051

0.0314

0.0356

Exact IE

ρ = 0.2
εrα

1.01

1.03

1.05

1.07

1.10

1.30

1.50

85.7022

32.8471

20.6157

15.1756

11.0140

4.3976

3.0527   

85.6153

32.7477

20.6099

15.1596

11.0013

4.4864

3.0058

0.0010

0.0030

0.0003

0.0011

0.0012

0.0253

0.0154

Exact IE

ρ = 0.05
εrα
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Table 4 Comparison of ARL1 values for EAR(2) model 
			   from explicit (Exact) formula and numerical 
			   171 	approximation (IE) for ARL0 = 1000, 
			   c = 0.2712625, λ = 0.25 and m = 500

Table 5 Comparison of ARL1 values for the trend EAR(2) 
			   model from explicit (Exact) formula and 178 
			   numerical approximation (IE) for ARL0 = 1000,
			   c = 0.2287596, λ =0.25 and m = 500

Conclusions
	 We have presented that the explicit formulas for ARL0 

and ARL1 of one-sided EWMA charts for the trend 
EAR(p) model. We have shown that suggested formulas 
are very accurate, and are easy to calculate and program. 
The suggested formulas obviously take the computational 
times much less than IE approximation. Using the 
formulas, we have been able to provide tables for the 
optimal weights, boundaries and approximations for ARL0 
and ARL1 for one-sided EWMA charts for the trend 
EAR(p) model.
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