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Abstract

In this paper, we propose an explicit formula of the performance for Exponentially Weighted Moving Average

(EWMA) chart by using the Fredholm integral equation of the second kind and the data are described by trend

Exponential Autoregressive order p (EAR(p)) model. The performance of the chart is measured by the Average Run

Length (ARL). The solution is compared with numerical approximations and we found that the computational time

of the explicit formula takes approximately 1 s while the numerical computations were approximately 10 min.
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Introduction

The Exponentially Weighted Moving Average
(EWMA) chart was first introduced by Robert (1959),
is often used for detecting the shift in the sequence
of independent normal distribution data. The chart is used
for detection the mean over time as they occur. The
autocorrelation has a large impact on the chart developed
under the independence assumption. The performance of
the chart is measured by the average run length (ARL).
ARL is a widely accepted measure of performance of a
chart. The ARL, denote the average number of observations
before an in-control process is taken to signal to be out
of control, and the ARL, denote the average number of
observations taken from out of control. An appropriate
scheme provides large ARL for in control processes and
small ARL, for out of control processes. The EWMA
chart is based on the EWMA statistic:

Z=(1-MZ +rY ,t=1,2,3,...;Z,=z (1)

where Z is the EWMA value of a statistic after t data,
z is an initial value for Z and a smoothing parameter
MO <A <1). Let Y, be an observed value of the trend
EAR(p) model defined below:

Y=atbt+¢ Y +oYt. .+ Y +C )

where ¢, be an autoregressive coefficient (-1 < ¢ <1,

i=1,2,3,...,p), C be an exponential white noise, Y is
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the trend EAR (p) model when a is a constant, and b is
the trend slope in term of t. Let ¢ be an upper limit on Z,
for determining that the process is an out-of-control
and let the first passage time ¢ be defined as the time at
the process is an out-of-control process. The process is
initially out-of-control at T, = 1 by the random data Z,
over the positive value c is
1. =inf(t=0:Z >c¢) 3)

The ARL of the chart at a given quality value c is
defined to be expected value of c. The methods for
calculating the performance of EWMA chart are Monte
Carlo simulation approach (MC) (Haq et al., 2015; Morais
et al., 2015; Riaz & Ahmad, 2016; Rabyk & Schmid,
2016), Markov Chain approach (MCA) (Chang & Wu,
2011; Huang et al., 2012; Saleh et al., 2013; Zhang et al.,
2014), Integral Equation approach (IE) (Crowder, 1987;
Calzada & Scariano, 2003, 2004), and analytical approach
(Areepong, 2009; Mititelu et al., 2010; Suriyakat et al.,
2012). The MC can be used when exact analytical
formulas are not available. The MCA was first studied
by Brook and Evans (1972). The IE for the ARL can be
expressed in terms of Fredholm Integral Equation of
the second kind by Crowder (1987). The Analytical
formulas can be easy to calculate and program. The article
is structured as follows. Section 2 presents EWMA chart
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and performance. Section 3 presents the uniqueness of
the solution for the ARL integral equation. Section 4 show
solution for the integral equation of EWMA Chart with
the trend EAR (p) model, Section 5 and 6 are the present
numerical solution to the ARL integral equation and
conclusions, respectively.

EWMA Chart and Performance

The assumption of random variables C, C, C,,... 1s
identically independent distribution with probability
density function f(x, o) where the parameter o = o, before
the change point time 6 < oo, at the parameter a changes
to a . The parameter does not change from o, the mean
that 6 <oo. The f(x,0) is an absolute continuous with respect
to f(x, o). The first passage time for this type of chart for
the statistic Z_defined as in equation (1) is typically

c-(1-Du-Ma+b+3 gV )
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1. =inf(t>0:Z >c)
where ¢ is a constant parameter known as the control
limit on the value of Z.

Uniqueness of the Solution for the ARL Integral
Equation

Mititelu et al. (2010), Busaba et al. (2012), Kanita
etal. (2014, 2015) proposed the uniquenes s of the solution
for the ARL integral equation. The ARL of EWMA
chart at a given level defined as L(u) = ARL = Et_ < oo,
the solution of the following integral equation for the
case where ( are continuous distribution i.i.d. random
variables with exponential distribution given by
f(x) = (Va)exp(-x/a), x > 0. The EWMA chart can be
calculated in term of the Fredholm Integral Equation of
the second kind by Crowder (1987) is applied below

Lay=1+], . L1 -DutMa+b+vy, ¢ +x) [ )

After a change of variable, while the corresponding AR(p) model is v. Then the following holds

x-(1 -/l)u-/l(a+b+vzjli

1 e
L =1+l 10 £ ( -

*l¢j))dx, wel0, ] (5)

However, the right-hand side of equation (5) contain only continuous function, it is clear that solution of the integral
equation (5) is a continuous function. Recall the complete metric space of all continuous function (C(T),|| ||,) where
I are a compact interval and the norm defined as |[L|| = sup, [L(u)|, the operator T is named the contraction it there
exist a number 0 < q < such that [[T(L,) - T(L)|| < q||IL, - L,|[ for all L,, L, € C(I). In our case, let T be an operator in
the class of all continuous function C(I), where I = [0, c] and let T be defined by

1 ¢ x-(1-Du-Ma+b+vY’

ML) =1+ -1, 7( - i

Where f(+) is the probability density function of the distribution. Then equation (6) can be written in operator form
as T(L(u) = L(u). To prove the uniqueness of the solution of equation (6) we first prove the following theorem.

‘¢j))dx, we 0, c] 6)

Theorem 1 On the metric space (C(I),| ||,) with the norm ||L|| = sup_[L(u) the operator T is a contraction.
Proof To show that T is a contraction we need to prove that for all u € I and L , L, € C(I) we have the inequality
IT(L,) - T(LIl < ql[L, - L,||, where 0 < q < 1. From equation (6) we have
1 < x-(1-Du-Ma+b+vY ¢)
ITCL) - T, < sup, o5 € - LA ( ; =)

1 (x-(1-Du-Ma+b+vY 4)
<IL, - Lyl sup,, g o5 0/ ( : 290 ) e )

S T G AR ARSI VA A

= q||L1 - L2||w
where 0< q = UA /(- (1 - Mu-Aa+b+0v (g, + ¢+ ...+ ¢ )M < 1.
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We have used the triangle inequality for norms and the fact that
IL,(0) - L,(0) < sup,, o 4 L,(x) - L,(x) =L, - L,]|
So, the unique of the solution is guaranteed by Theorem 1 and the Banach Fixed Point Theorem.

Solution for Integral Equation of EWMA Chart with Trend EAR(p) Model

In Theorem 2, we derive explicit formula for ARL of one-sided EWMA chart with the trend EAR(p) model by the
integral equation. Since Suriyakat et al. (2012) presented the explicit formula for ARL of EWMA chart for AR(1)
model with exponential white noise. The uniqueness of solution is guaranteed by Theorem 1.

Theorem 2 The solution of equation (5) is

kexp((1 (;j)u)(exp (— % —1)

Lu)=1- ,uel0,c]. 7
kexp(- ath +aDZ?'1¢J ) + exp(-;T)-l

Proof We have u € [0, c] that

1 . -(1-Mu-A b ’
L(u)=1+r IO L(x)f(x ( u - (;'i- +DZ 1¢) )d (8)
The function f'(-) can be written as
x-(1-Mu-Ma+b+vy 4) x-(1-Mu-Ma+b+0y $)
7( . ) = enpl = ) ©)
The function L(u) can be written as
-(1-Mu - M b -
=1+ L I L(x)exp ( x-(1-Mu (}il +b+oY 4) ) W 10)
Let
1-A M b -
Clu) = exp( (1-Murt (a; ! uzﬁqu)), uel0, c] (11)
Then we can write as
Lu)=1+ % I Lewyexp (- aix )dx (12)
Letd= f;L(x)exp(—a—); ) dx. we can obtain
C(u)
Luw)y=1+ .y d (13)
we can express the constant d as
. aA(exp (— < )—1
d= IO L(x) exp (—a) dx=- (14)

1+exp(——) exp (a+b+vzp ¢)

where to substitute d into equation (13) the solution for the integral equation is
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BN
hexp (a+ b+ 0y §)+ exp(-%)- |

Lu)=1- (15)

Numerical Solution for Integral Equation of EWMA Chart with Trend EAR(p) Model
In this section, we present a numerical method to evaluate the solution L(u) = Et_of the equation (5) for ARL of
the trend EAR(p) model. First, we recall equation (5) in the form

(x—(l —K)u—k(;z+b+vzj_l¢j))dx. (16)

Lw)=1+ %f:L(x)f

where f'(+) is an exponential distribution function. We can approximate L(u) using the Gauss-Legendre quadrature

rule as follows:

La)~1+ %Z;i]ij(aj)f( a-(1-Ma,- 7‘(;’ MALDIR) ), i=1,2,3,.m (17)

c c
where W= >0 and a,= ;(} -0.5)>0forj=1,2,3,...,m. The equation (16) then becomes a system of m linear
of equation (17) in the m unknowns L(a,), L(a,), ..., L(a,). For numerical method, it can be written in matrix form as

L =1 (18)

m ><Wl) m m

(I -R

where L = (L(a)) L(a,) ... L(a,))' and

mxm

1 1f( a-(1-Ma -Ma+b+ vzj:lfﬁj)) %Wmf(a'” -(1-Wa, - k}fa +b+ ij:1¢j))

A 7

A

1 - (1-Da, -Ma+ b+ 03 $) 1 (L=, -Ma+ b+ vy ¢)
Twlf(a a )La 1] ) 7vaf(él a ka 1] )

and / = diag(l, 1, 1, ..., 1) is the unit matrix of order m. If there exists (/, - Rmxm)", then the solution of the

matrix equation (18) is

1 (19)

m><m) m

L =(, -R

We can approximate the function L(u) in equation (16) as

~(1-Na -\ b "o
RGN 20

Twy=~1+ % " wiL(a) f(

wherew = < anda = < (j-0.5) forj=1,2,3, ..., m.
J m J m
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Numerical Results

In this section, we compare the closed form
expression given in Theorem 2 for L(u) = ARL for the
EWMA chart when data is the trend EAR(p) model
with the approximate numerical solution for the
ARL = L(u) given in equation (20). We define the
relative error as a measure of accuracy of the
comparisons:

O A0
' L(u)

Table 1 Upper limits by explicit formula with A = 0.25

p
0.05 0.1 0.2 0.3 0.4

500 0.2709690 0.2555894 0.2285049 0.2043548 0.1829966
1000 0.27126250.2561741 0.2287596 0.2458660 0.1832074

ARL

0

We used equations (15) and (20) to compute the ARL
for the second order trend autoregressive model

(AR(2)) with a = 1, the pairs (¢, ¢,) considered was
p=¢,, ¢, corresponding to these pairs are the values of
A=0.25;p=0.05,0.1,0.2,0.3,04; a=0; b=0.2; and
initial value is 1, respectively. All results were performed
with programs written in the MATLAB software. The
upper limits for EWMA chart were chosen by given
desired ARL = 500, 1000 are shown in Table 1.

Tables 2 and 3 show a comparison of exact and
numerical solutions for the trend EAR(2) model
for given ARL = 500. In Table 2, we assume 4 = 0.25,
p = 0.05, ¢ = 0.2709690 and the number of division
points in the Gauss-Legendre rule m = 500. For a. = 1 the
process is in control whereas for o > 1 the process is out
of control. In Table 3, we assume A = 0.25, p = 0.2,
¢ = 0.2285049 and the number of division points in the
Gauss-Legendre rule m = 500. The results obtained
from both methods are again in good agreement
with less than 0.04 relative errors for the range of
the values. The CPU time based on the exact solution
take less than 1 second while the numerical integral
equation takes approximately 10 minutes.

Performance of EWMA Chart for Trend Autoregressive Model

Table 2 Comparison of ARL, values for the trend
EAR(2) model from explicit (Exact) formula
and numerical approximation (IE) for
ARL, = 500, ¢ = 0.2709690, 4 = 0.25 and

m =500
p=0.05
¢ Exact IE &
1.01 85.7022 85.6153 0.0010
1.03 32.8471 32.7477 0.0030
1.05 20.6157 20.6099 0.0003
1.07 15.1756 15.1596 0.0011
1.10 11.0140 11.0013 0.0012
130 43976 4.4864 0.0253
1.50 3.0527 3.0058 0.0154

Table 3 Comparison of ARL, values for the trend EAR(2)
model from explicit (Exact) formula and 159
numerical approximation (IE) for ARL = 500,
¢ =0.2285049, 2 =0.25 and m = 500

p=0.2
¢ Exact IE &
1.01 77.6699 77.5616 0.0014
1.03 29.4613 29.4127 0.0016
1.05 18.4689 18.2244 0.0132
1.07 13.5995 13.3409 0.0190
1.10 9.8829 9.8329 0.0051
1.30 3.9911 3.8656 0.0314
1.50 2.7980 2.6983 0.0356

Tables 4 and 5 show a comparison of exact and
numerical solutions for the trend EAR (2) model for given
ARL, = 1000. In Table 4, we assume 4 = 0.25, p = 0.05,
¢ = 0.2712625 and the number of division points
in the Gauss-Legendre rule m = 500. For a = 1 the process
is in control whereas for a > 1 the process is 164 out
of control. In Table 3, we assume 1 = 0.25, p = 0.2,
¢ =0.2287596 and the number of division points 165 in
the Gauss-Legendre rule m = 500.
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Table 4 Comparison of ARL, values for EAR(2) model
from explicit (Exact) formula and numerical
171 approximation (IE) for ARL = 1000,
¢=0.2712625, 2= 0.25 and m = 500

p=0.05
¢ Exact IE &
1.01 93.6261 93.5223 0.0011
1.03 33.9211 33.9904 0.0020
1.05 21.0238 21.0037 0.0010
1.07 15.3906 15.2987 0.0060
1.10 11.1231 11.0926 0.0027
1.30 4.4119 4.4022 0.0022
1.50 3.0586 3.0023 0.0184

Table S Comparison of ARL values for the trend EAR(2)
model from explicit (Exact) formula and 178
numerical approximation (IE) for ARL = 1000,
¢ =10.2287596, A =0.25 and m = 500

p=0.2
¢ Exact IE &
1.01 84.1188 84.0272 0.0011
1.03 30.3208 30.2719 0.0016
1.05 18.7948 18.6904 0.0056
1.07 13.7712 13.6537 0.0085
1.10 9.9701 9.8812 0.0089
1.30 4.0027 4.0001 0.0006
1.50 2.8028 2.7991 0.0013
Conclusions

We have presented that the explicit formulas for ARL
and ARL, of one-sided EWMA charts for the trend
EAR(p) model. We have shown that suggested formulas
are very accurate, and are easy to calculate and program.
The suggested formulas obviously take the computational
times much less than IE approximation. Using the
formulas, we have been able to provide tables for the
optimal weights, boundaries and approximations for ARL,
and ARL, for one-sided EWMA charts for the trend
EAR(p) model.
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