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Abstract

In this paper, we study the earth’s surface layers using time-domain electromagnetic field by constructing

2 mathematical models. In the first model, the ground is considered uniformly and having constant conductivity

profile, denoted by a positive constant o,. The second model, we divide the ground surface into 2 laterally

uniform layers. The conductivity of overburden increases with depth, given by o,e”*9, 0 <z <d, where b is a
positive constant, and d is the thickness of overburden. The conductivity of host medium, z > d, is a constant o,

By solving the models using mathematical techniques, the electric fields response from the ground surface are

simulated and plotted to show their behaviors which decay rapidly depending on the conductivity of ground

structure.
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Introduction

The simplest models for the preparation of curves
for the transient electromagnetic field response from
the earth’s surface layers are considered. The earth
structure usually can be denoted by horizontally
stratified earth (Banerjee et al. 1980), where each
layer having homogeneous and isotropic electrical
properties. A separate analytical study is necessitated
when the conductivity of a layer varies in a particular
direction, say, with depth. Such situations occur in
permeability and salinity tests of the overburden and
ground water recharging schemes. A geological
situation where one of the layers has a conductivity
varying with depth locates in much of the area near
the sea shore in the southern and eastern parts of
Thailand. In this paper, we have to define the nature
of this study in order to use the time-domain
electromagnetic response in heterogeneous media.
The conductivity of the ground depends on the depth
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only. Firstly, we consider the ground which has a
constant conductivity profile, defined by o (z) = o,
where o, is a positive constant. Secondly, we
consider the ground containing two layers, the
overburden and the host medium. The conductivity of
overburden given by o, (2) = 0%, 0 <z <d,
where b is a positive constant and d is the thickness
of overburden. The conductivity of host medium,
z > d , is constant given by o, (z) = o,. The
exponential ground profile used in this paper is
different from the model used by Banerjee etal. (1980),
Kim and Lee (1996), Lee and Ignetik (1994),
Yooyuanyong and Siew (2000), and Yooyuanyong
(1999, 2000). The objective of this paper is to present
mathematical models and techniques for studying the
structures of the earth’s surface layers. The electric
fields from the two models are then compared and

discussed.
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Formulation of the Problems

In cylindrical coordinates with the basis vectors,
e,, e,and e, letr, 6, and z denote the axes along the
basis vectors, respectively. For the horizontal loop
source, the azimuthally symmetry gives electric fields
E which are independent of the azimuth angle & and
it can be shown that the electric fields have only the
E, component (Morrison et al., 1969; Ignetik et al.,
1985), which we shall denote simply by Eas follows,

E=Ee,.
The magnetic fields have only the radial H, and
vertical H, components. Following Morrison et al.
(1969), it is accepted here to use exp (-iwt)
dependence. Hence, these field quantities are found

to satisfy the Maxwell’s equations (Hohmann and
Raiche, 1988) in the forms of

iouH, = % , (D
0z
ot = 1905 @)
r Or
and ag, - aab:’ =(o(z)-iwe)E +J,, (3)

where J = al(w)d (r-a)d (z+h)/r is the source
current density, o is the angular frequency, J is the
delta function (Jeffrey, 1995) in the form of

5(x)={°°;x =0

for all real number x, o(z) is the
O;x#0

electrical conductivity of medium depending on the
depth only, € is the electric permittivity of medium,
and u is the magnetic permeability of medium.
Equations (1) - (3) can be solved to get the
differential equation for electric fields as

. 0°E O°E 10E E .

opJ, =————————+ ——

! s 2 o o (iouoc(z)
+w’ue)E. 4)

Taking Hankel transform which is defined as
E(A, z,0)= Jj rJ,(Ar)E(r, z, 0)dr,

where J| is Bessel function of the first kind of order
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1, and thus, equation (4) becomes

iopal(@)o(z + h)J,(Aa)

o*E

e +(/‘12—(ia)y0'(z)+w2ﬂ€)i- (5)
oz

Half-Space Model with a Constant Conductivity
Ground Profile

We now consider the ground with a constant
conductivity profile which can be defined by o(2)=
o,, z>0, where o, is a positive constant. This model
represents to the rock area located near the
mountain. There is a primary alternating source
current carried by a coil of radius a, at z = -h above
the surface of the earth, z = 0 (see Figure 1).

z<0 S

<X
h { 7 Receiver
— =

urce

z>0 ap(z)=0'0

\ ZV

Figure 1 Illustration of the half-space model with a

constant conductivity ground profile

The Electric Fields in Air

The electric fields in air can be denoted by
Ea,,(/i,z,a)) and expressed as the sum of two

components,

Em., A, z,0)= E”(/?,, Z,)+ E* (4, z,w),

where E”(A,z,®) is the primary field and
E’ (A, z, ) is the secondary field. In air, &, (z)=0
the magnetic permeability is approximated to be x4,
where 4 is the magnetic permeability in free space
and the electric permittivity is approximated to be &,
where & is the electric permittivity in free space.
Therefore, the electric fields can be obtained from

equation (5) as
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iop,al(w)6(z + h)J,(Aa)

2
:—aa—E”(/l 2,0)+ mE"(4,z,0), (6)

z
where m; = A> —k; and k; = @’ u,¢, . Equation
(6) is an ordinary differential equation and we can

rewrite as
iou,al(0)d(z + h)J,(Aa)

=2 _E"(Az,0)+mlE"(A,z,0). (7)

Let E’(L,z,0)= E! (A, z,0)+ El (l,z,0),  (8)

where E ;5 (4,z,w) is the general solution of linear
homogeneous ordinary differential equation and
E,f’ (A4, z,) is the particular solution. The general
solution to equation (7) can be obtained from

dZ
el E”(/l Z,m)— mOEp(/l z,w) =0,
and the solution is

El (A, z,0)= Ae™™ + A,e™,

where both 4, and A4, are arbitrary constants to be
determined from the boundary conditions. The
particular solution of equation (7) can be achieved
by using the method of variation of parameters to get
the electric fields, E 7, as

2m,

where g = -iopal (v) J, (Aa) and G(z,x) is the
Green’s function defined by

E,f’ o f G(z,x)dx,

e ™ IS(x+h)z 2 x

G(z,x =e ™ S(x+ h) = .
) G ) {em“(z")§(x+h);z<x

Since f e s (x + h)dx = e ™ the electric

fields, E,f’ , can now be shown to be

Er(Az,0)= —zie‘"“‘“”', z<0.

0

The solution of equation (8) which represents the

electric fields in air can be calculated from
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EP(A,z,0)= Ae™ + A,e™

| iopal(@)J, (Aa)e ™=

, z<0.
2m,

When z —>—0, E” — 0, therefore, we require
A, = 0. Hence,

E”(/l, z,0) = A,e™

| ioual (@), (Aa)e ™=

, z<0(09
o ©)

For the secondary field, since /(@) = 0, equation (4)

becomes
2 2
aa E’ (xlza))+—a—E (A,z,0)
L2 p ey - B
r Or r

+klE (A, z,0)=0. (10)

Taking Hankel transform to equation (10), we obtain
02
a 2

Since the above equation is a linear homogeneous

E(/lza)) mOE (A z,0)=0.

ordinary differential equation, it can also be written as
dZ
d 2

Furthermore, the general solution of equation (11) is

Z_E'(Az,0)-miE*(A,z,0) = 0. (11)

E'(Az,0) = Aye™ + A,e™, (12)

where 4, and A4, are arbitrary constants to be
determined from the boundary conditions. As
z —>—oo, then lim E° — 0, we require 4,= 0

- . 2

and hence the solution of equation (12) becomes

E*(A,z,0) = Ae™. (13)
The electric fields in air now become
Ea,, A, z,w)=
. —my|z+h|
iopal(@)J, (Aa)e +Ae™, z<0, (14)

2m,
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where 4 =4, + A,

The Electric Fields in Ground

From equation (4), we obtain the following partial
differential equation

o’ o’

10
&7Egm(r,:,a))+ar—zEgm(r,:,a))+—r—a—rEgm(r,:,a))
E, (r,z,0)
gro 2 _
-—————+k,E,, (r,z,0) =0, (15)

where E_ (r,z,0) is the electric fields in ground,

k; =iop,0y+®°p6, , p, is the magnetic
permeability of ground, ¢, is the electric permittivity
of ground, and o is the conductivity of ground which
is assumed to be a constant. Taking Hankel
transform to equation (15), we get

2
9

&7 Eam (A,z,0)—m>E
zZ

I 4 gro

(A4, z,0) =0,

2 S
where mé =1 - k; The above equation is a linear
ordinary differential equation and we can write it as

d> ~ ~
?dz—zEgm(l,z,a))—m;Egm(/l,z,w):0, (16)
The solution of equation (16) is

Egm (A,z,0) = A;e " + Age"™, (17)

where A, and A4 are arbitrary constants to be
determined from the boundary conditions. Under the
condition that as z —>, E w0 —> 0, werequire 4,=
0. Thus, equation (17) becomes

z>0.

(18)

From now on, we assume that the magnetic

E,,(4,z,0)= Ae "™,

permeability of the ground is 4, and the electric
permittivity of the ground is g,. The arbitrary
constants A and 4, can be solved by imposing

the continuity of E and £ at air-earth interface.

That is 0z
E, (A4,0,0)=E,, (1,0,), and
0 ~ d ~
—E,_ (1,0,0)=—E, (1,0,0).
aZ all'( ) az g ( )
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We obtain the electric fields in air as

— la)ﬂoa](a)) f_ﬂ’_[e'mniz*'h{
2 m,

—e" Y (Aa), (A)dA +iwp,al (@) X

Ealr (r’ Z’ a))

[ 1—2—10,(a)J, ()™ az (19)
. T
and the electric fields in ground are

E,,(r,z,0)= f/ifgm(i, z,0),(Ar)dA,

e 2
= la)ﬂoal(a))-[mgjl (Aa) X
g 0

J,(Arye e gy (20)

The electric fields on the ground surface £, can be

sur?

determined from equation (19) or equation (20) by
considering z = 0. Thus, we have

E  (r,0,0)=iou,al(®)x

sur
f A
|
mg +

Transient electric fields can be determined by taking

J,(Aa)J, (Ar)e " MdA.

0

Fourier transform to E(7,z, ®) as
1 ;
E(r,z,t)=— | E(r,z,0)"""do.
(rzn=5-[ EC.z0e
Consequently, equation (19) can be written as
H,a 1 ia)I(a)) —my| z+h|
E_ (r,z,t)=— — | ——|e
w2 =2 [ A [ L

_ en'n(z‘lhl) ] e(‘m)’)dCU]Jl (ﬂa)']l (ﬂr)dﬂ

1 iol(w)

A el a2
+,anf [2” fx[mg +m0 8
emn(;_|h]) ]e(—l(ul)da)]Jl (ﬂa).]l (b)dﬂ,

At this point, we consider the current switch-off by
taking = 0. We find that

@)= [ 1,0 -u()e ™,

where I, is the amplitude of current, and () is step-
function of Heaviside. Generally, we can regard @ as
a complex variable, defined by @,+ ix where x is a
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small imaginary part. Taking Fourier transform to
Heaviside step-function and the result is

1
U(w)=—.
io
Since wis real, we take k= 0. Consequently, io X w) =
I, . As p g is a very small positive number, then m,

is approximately equal to A . The result becomes

_ Moal, “Alzeh| A
E,(rz,t) == f[e A x

air

[-2-1; fxe""“’)da)] J,(Aa)J,(Ar)dA

. 1 v
——"dw]x
m, + A

o1

+ pyal, f'l[g
e (Aa)d,(Ar)dA.

Knowing that e("®) is an analytic function, then
fe“"“”da) = 0 (Wunsch, 1994). Thus,
E, (r.z.1) = mal, [ AFe" 1" x

Jy(Aa)J, (Ar)d4,

1
27 "ng+ﬂ.

21)

where F; = e dw The mathematical

expression for F, may be determined by using
contour integration. Applying the standard Bromwich
contour to equation (21), then we obtain

o)== e [ 000
GO
J(Aa)J, (Ar)dA,
where 7, = is a dimensionless time variable.

MOy

Let ¢; = |h\ -z, thus

air

al .
E_ (r,z,H)=——2 fﬂze"{(g‘ ™) %
O-O

J,(Aa)J,(Ar)dA. (22)

As we can consider the coil of transmitter to be
small (@ — 0), then we can approximate J, (1a) by

_’sz_. Thus,
2
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2
Ea,,(r,z,t)=—{; fy

x
Oy

[ #e oy anda.  @3)

When r—0, that is, the distance between the

transmitter and receiver is smaller, we have

J, (Ar) = %ﬁ and the transient electric fields now

become

6ra’l,

E (r.z,t)y=s———.
o,(55 + 73)5

(24)

Two Layered Earth Model with an Exponentially
Increasing Conductivity Profile in Overburden

We now consider the ground in the form of two
layers which represent to the area near sea shore. An
overburden has conductivity given by

(o}

ove

z)=0e?" ) 0 < z<d,
0

where b and o, are positive constants. The
conductivity of host medium is a constant, which can
be defined as

0.2 =0, z2=d.

At this point, we consider a primary alternating
current source carried by a coil of radius a, at height
z = -h above the surface of the earth, z = 0 (see
Figure 2). We follow the same method as in the
previous section and after doing the mathematical
analysis, we obtain the transient electric fields

12 2
Emr(r,z’t):__:iﬁ_l"b—'s
20041(§4_T4)
12 2
)
80_04 (1 - 51 )(g4 - 74)
where _b p’~Eé —e%
P 5’ 2, [ s
b\|h| - 2
g4:_q—|__z__), z';:_._ri._._ and ‘[4=Lb——,
2 gl(l—gl) HoO
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z<0< é;mrce
- a

L { h r  Receiver
z=0 > R
0, (2) = e
B2 S IO z=d
{ Chon ()=
Z

v
Figure 2 Illustration of two layered Earth model with
an exponentially increasing conductivity profile in

overburden

Conclusions and Future Work

The objective of this paper is to present some
mathematical models and techniques needed
for studying the structures of the earth’s surface
layers. We briefly described the exploration of
geomathematics and concentrated on the time-domain
electromagnetic method. We formulated the problem
to get the electric fields, which could be used to
find the electric fields on the ground surface. We
considered two models. The first one is for the ground
having constant conductivity profile, defined by
0,(2) =0, where o is a positive constant. The
second one is for the ground having two layers, the
overburden and the host medium. The conductivity of
overburden is given by o (z) = 0,e?9,0<z<d,
where b is also positive constant. The conductivity of
host medium, z > d , is a constant given by o, (z)=
o, . The electric fields in each model were expressed
in terms of mathematical expressions and plotted. The
curves of transient electric fields of equations (24)
and (25) decayed rapidly as shown in figures 3, 4 and
5. In case of an overburden with thickness 2 m, the
curve of transient electric fields of equation (25) also
decayed as shown in figure 5, but it was higher than
the results shown in figure 4 in which the overburden
thickness is 10 m. This result is caused by the
thickness of conductive overburden layered. As the
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0.0002 0.0004 0.0006 0.0008 0.001

Figure 3 Graph of log E versus ¢ for the half-space model

with constant conductivity ground profile o,= 1 Sm"'

log(E)

T 00002 0.0004 ' 00006 0.000B  0.001

b[1]:=0.05
b[2[=0.07
b[3[=b[2]"1 5
bl4]:=2%b[2]

Figure 4 Graph of log E versus ¢ for the half-space model
with an exponentially increasing conductivity ground
profile, d=10m ,b = 0.05m", 5,=0.07 m', b, =0.55,m’,

b,=2b,m"'and o= 1 Sm’!

overburden thickness decreases, the transient
electric fields of equation (25) tend to the transient
electric fields generated by equation (24). These are
shown in figures 3 and 5. The curves of transient
electric fields of equations (24) and (25) decayed
rapidly as we expected. The master curve of
transient electric fields can be used to compare with

the field measurement for describing the ground
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Figure 5 Graph of log E versus ¢ for two layered Earth
model with an exponentially increasing conductivity
profile in overburden, d=2m, b =0.05m", b,=0.07m",
b,=1.5b,m",b,=2b m",and o,= 1 Sm’!

structure. However, the equations (24) and (25) can
be used for only the case » — 0 and a — 0, and
these may cause the problem in practice to set the
transmitter and receiver spacing.

It is possible that additional studies with more
complicated layered structures can be conducted and
new problems should also be solved by means of
formulated equations in future work. Moreover, other
mathematical methods may be applied to study
such problem as well as those found in the future.
Furthermore, it is also possible to use numerical
methods in the future work to compare the results
with those obtained from analytical ones.
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