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Abstract

For a unary operation f on a finite set 4, let denote A(f) the least non-negative integer with
Im f*Y) =Im "' which is called the pre-period of f . K. Denecke and S. L. Wismath have characterized
all operations f on 4 with A(f)= |A| —1 and prove that A(f) = |A| —1 ifand only if there exists a d € A4
suchthat A={d, f(d), f*(d), ...,f‘AH (d)} where f‘A‘*1 (d)= f‘A‘(a’) . C. Ratanaprasert and K. Denecke
have characterized all operations f on A with A(f)=|A4|—-2 forall | A|> 3, and have characterized
all equivalence relations on A which are invariant under f with these long pre-periods.

In the paper, we study finite unary algebras A= (4;f) with A(f)e{0, I} for | 4]|>3
which are called symmetric algebras and near-symmetric algebras, respectively. We characterize
all operations f whose A is congruence modular. We prove that a symmetric algebra A s
congruence modular if and only if the lattice ConA of all congruence relations is either a product of
chains or a linear sum of a product of chains with one element top or a M, —head lattice; and a
near-symmetric algebra A is congruence modular if and only if ConA is one of the followings:

2xP, 2x(P®1), 2xL, M, xP, M, x(P®1), or M,xL

where P denote a product of chains and L is a M, — head lattice.
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Introduction

Monounary algebras are algabras with one
unary fundamental operation. Mono-unary and
partial monounary algebras play a significant role
in the study of algebraic structures. Moreover,
there exists a close connection between monounary
algebras and some types of automata. The advantage
of monounary algebras is their relatively simple
visualization. They can be represented by a graph,
which is always planar, hence easy to draw. Unary
algebras were first intensively investigated by
B. Johnson about 40 years ago and were investigated
mainly by D. J. Studenovska (1982, 1983). The
problem of describing the lattices which are
isomorphic to congruence lattices of monounary
algebras is still open.

Let A be a finite set and denote by | 4| =2
the cardinality of 4. For a unary operation f on
A, letIm f = {f(x)|x € A} betheimage of f and
let A(f) be the least non-negative integer m such
that Im /" =Im """ . The number A(f") is called
the pre-period of f, sometimes also the stabilizer
of f. K. Denecke and S.L. Wismath (2002) have
proved that A(f)=]| A|—1 if and only if there
exists a d € A such that A={d, f(d),f*(d),
v f ‘A‘fl(d )} which shows a characterization of
all longest pre-periods f .

It is well-known that the congruence lattice
of an algebra is uniquely determined by the unary
polynomial operations of the algebra. C. Ratanaprasert
and K. Denecke (2008) have characterized all unary
operations f onafiniteset 4 with A(f)=|A4|-2
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for | A| >3 and they also have characterized all
equivalence relations on 4 which are invariant
under f with A(f)=|A|-1 for |4|>2 and
A(f)=|A|-2 for | A|=3. These answer the
above open problem for some of monounary
algebras. Besides, the results convince us that the
pre-period of unary functions defined on a finite
set will be a kind of notions for classifications of
finite algebras. At the beginning of the eighties,
R. McKenzie and D. Hobby (1998) developed a

new theory, called “Tame Congruence Theory”
which offers a structure theory for finite algebras.
If Im /] =|4] or [Im f|=1,then 4 =(4;f) is
called a permutation algebra; thatis, A(f) € {0, 1}
and f is of short pre-periods. Permutation algebras
play an important role in tame congruence theory.

In this paper, we are interested in formulating
a characterization of all unary operations defined
on a finite set A with short pre-periods. We prove
necessary and sufficient conditions of f whose
permutation algebras are congruence modular and
then characterize all lattices which are isomorphic
to the congruence lattice of modular permutation

algebras.

All lattices which are the congruence lattices of
modular symmetric algebras.

In this section, we assume that 4 is a
finite set and f is a unary operation on 4 with
A(f)=0. Note that A(f) =0 if and only if f
is a permutation on A . In the theory of groups, the

group of all permutations on a nonvoid set A4 is
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known as a symmetric group and it is well known
that every permutation can be decomposed into
simple parts called cycles. We call the monounary
algebra A=(A;f)in this case, a symmetric
algebra. If A4 is a singleton or a two-elements set,
the lattice Cond of all congruence relations on A
is also a singleton set {A ,} or a two-elements chain
{A ,, Ax A}, respectively; so, A is congruence-
distributive. We are interested in the case | 4|>2 .
We first consider necessary conditions for f* whose
A is congruence-distributive.

Recall that the notation 8(B) stands for the
least congruence on an algebra A which contains

asubset B of 4.

Proposition 1. If Aisa congruence distributive
symmetric algebra with | 4| >3 then either f is
a cycle having at most one fixed point or, f has
no fixed points and f is a product of two disjoint
cycles whose lengths are relatively prime.

Proof. Suppose that f =, ..., for r >3 and
@, and « are disjoint cycles forall I <i# j<r.
Let o =(123) and denote by B,, the set of all
elements in the cycle ¢; for all 1 <i <r. Since
B,NB, is empty and f(x) € B, whenever
x € B, forall 1<i<r, therelations 6, :=A U
{ (x, ) [{x,y} < B, VB, or {x,y}c Baz(j)} is

invariant under fand ®:= 0,70

o) =
3

A, uU{(x,y) |x,y € Bk} for all je{l,2,3}.
k=1

Also, the congruence 6=6(B, UB,UB,)
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contains @, for all j€{l,2,3};and if (a,b) €0
then {a,b} < B, VB for some j e {1,2,3}

6.,=0

a(J))

a(j)

; hence, (a,0)€0, v, ;

for all je{1,2,3}. Therefore, Cond is not

so, 6’1. v

distributive since it contains a M, —sublattice
{01,92,93,60,0} .
We note that if |A| =3 and Cond is not

O

distributive then ConA is the modular lattice M 5-
Remark 1. Let (B; f®)be a subalgebra of 4.
We will denote the restriction 6|, of 8 = Ax A4

on B by 6,.And if 8 c Bx B, we will denote

the relation @ U {(x,x)|x€ A} by 0*. Then
0, € Con(B; f*) for all OeCond and
0" € Cond forall 8 € Con(B; f*).

Remark 2. Let (af(a)...f""'(a) and

(bf(b)... £ (b) becycles in the product of f
for some positive integers p and ¢ and 6 € ConA .

() If (a, f"(a) €6 forsome 0<r<p—1,
then (a, f* (a) € @ forall non-negative integer .

(i) If (a, f"(a) €6 for some integer
0 <7< p—1 which is not a factor of p then
{a, f(a),..., f""(a)} is contained in a block of
the quotient algebra % .

(iii) If (p,q)=1 and(a,b)€ @, then
{a, f(@),.... f77(@)b, f(B),o, £ (D) s
contained in a block of % .

Recall that a linear sum of an ordered set P
with a one-element chain 1 is an ordered set P @ 1
which can represents P with a new top element

added.
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Proposition 2. If f satisfies the conditions of
Proposition 1 then Cond is either a product of
chains or a linear sum of a product of chains with a
one-element chain.

Proof. Let |A| =n and f beacycle having no fixed
point and a € A. Let denote dn the lattice of all
factors of n ordered by the division of integers. For each
med njet fU%(@)={f"(a) |s=j (modm)}.
Then ¢, = {f[j]”’ (a)|j:O,l,2,...,m—1} is a
partition of A which corresponds to the congruence
6, modulo m restriction to A ; that is, 6, =
{(x,y) |x,y e fUh(a) for j = 0,1,2,...,m—1}.

Hence, the map « 4 n— Cond defined by
a(m)=06, forall m el n is clearly an order-
isomorphism; so, ConA is dually isomorphic to
dn which is a product of chains.

Next, assumethat f* = o,&, where ¢, and &,
are disjoint cycles whose lengths are relatively prime
whenever both of them are of lengths more than one.
Then, f |5 isacycle onthe set B, ofall elements in
thecycle , for i € {1,2} . Hence, Con(B;; f | ) is
a product of chains for i € {1,2} . Since {B,, B, } is
a the partition on 4, 6" U @;' is a congruence on
A forall 6. € Con(B;; | ) and i € {1,2}; hence,
ConA is a sublattice of the power set of Ax A4, ;
so, the map B:(6,,6,) — 6" v 6;' is an order
embedding from Con(B;; f | )x Con(By; f |5)
into Cond .

Let 6, € Con(B,; f |, ) for i € {1,2}. Then

(x,y) 26" v 6 whenever xe B, andy € B,;
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so, 60'vO'#AxA; hence, AxAgImp.
Now, if @eCond\{AxA}then 6; UG,
€ ConA where 6 LB, 6. If (a,b)eb
with ae€ B, and be B,, the result (iii) in
Remark 2 implies that 4 = B, U B, is a subset of
a block of % since the lengths of ¢, and &, are
relatively prime; so, @ = Ax A, a contradiction.
So, if (a,b)€ @ then {a,b} < B, for some
i€{l,2}; hence, (a,b) e 93,. C 49;: Ué’;z . Thus,
@ e fB. Therefore, Cond\{AxA}=Imp
= Con(B,; f | ) x Con(B,; f |,) . Hence, Cond
is a linear sum of a product of chains P and a one-
element chain 1. a
We knew that an algebra A is congruence-
distributive if A is singleton or a two-elements set.
In the case | A|=3,if f is identity then Cond
is modular; and if f* is not identity, Proposition 2
implies that ConA is distributive. We will consider

the case | 4| > 4.

Proposition 3. If a symmetric algebra A with
| A| >4 is congruence-modular, then f is either
one of the followings:

(1) f is a cycle having at most two fixed
points, or

(ii) f has at most one fixed point and f is a
product of two disjoint cycles whose lengths are
relatively prime, or

(iii) f has no fixed point and f is a product

of three disjoint cycles whose lengths are relatively
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prime.

Proof. Similar arguing as the proof of Proposition
1. Suppose that f is a product of at least four
disjoint cycles a,a, ..., where r >4 and all ¢,
and ¢ are disjoint cycles (can be of length 1) for
1<i+# j<r.Then, we construct the following 3

congruences :
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all k € B,; hence, (k,l)€ 6, for all k € B,and

leB and also, (k,s)e@, for all ke B,

o(i)
and s € B, which implies that (s,m) € 6, for

all meBg3(i)and seB_.;

o(i) >

thus, (s,q,) €6,

for all seB Now, a0, x0,s 0, q, 6, b

o(i) *
implies that (a,b)e€ 6, v 6. If (q,,q,,) & 0;

for all £k < j <t -1, the same arguing as above

91:AAU{(x’y)Hxay}ngUBa(z) or {x’y}gBaz(l) or {x’y}gBo.3(l)}

02:AAU{(x7y)|{x7y}gBiUBa(i) or {xsy}ngz(i)UBU3(i)} and

o, :AAu{(x,y)|{x,y}gBiuB02(i) or {x,y}c

Where o = (1234) . One can4show that 6, < 6,,
O, NO, =0, NO, =AU U{(x,y)|x,yeBk}
and Ov0,cO,v0,. 1t (ab)eb, o,
there are a=g¢,,4,,...,q, =be A such that
(9;,94,,) €6, 0, forall 0 <k <t—1.Wemay
assume that (a,q,) € 6, . The finiteness of the set
O={a=gq,.q,,...,q, = b} implies the existence of
the greatestelement g, € Q suchthat (g, ,q,,,) € 6,
but (¢, ,,q,) € 6, forall1 <i < k;so, (a,q,) €0,.
If (4;,9;,) €6, for each k< j<¢-1 then

(4;,b) € 6;; hence, {a,q,}c B, VB, or
{a.q,} < Bc,z(,-) UBos(l-) Af {a,q,} < B,V B,

then (a,q,)€6,; so, (a,b)€f vb,; but,

if {a,q,} < B or {a,q,}c 863([) then

o (i)

(a,q,)€b;; so, (a,b)e@, 0O, vO, . We

consider the case a € B , 0 and g, € B , 0 We

have be B, or be B, ; so, (a,k)e€8; for

3(1') >

28

Bo'(i) ~ BO'3(i)}

and by continuing the process one can prove that
0,v0,cb vo,. S0, 6,vO,=0,v0,.
Therefore, ConA isnotmodularsinceitcontains

a Ny —sublattice {6,,60,,0,,0, A0,,0, v 0,}. O

We note from Proposition 3 that ConA is not

modular if | 4|>4 and f is an identity on 4.

Proposition 4. If Aisa symmetric algebra with
| A|= 4 whose f has no fixed points and f isa
product of three disjoint cycles all of them are of
relatively prime lengths, then ConA is modular
which is not distributive.

Proof. Let [ = a,a, satisfy the conditions
of the proposition. Then, Proposition 1 implies
that Con(B;; f|; ) is a product of chains and

Con(B, VB f |Blu3, ) is a linear sum of a product



C. Ratanaprasertand S. Thiranantanakorn

of chains P with a one-element chain 1 for all
i,je{l,2,3}.

If 0=A,, clearly 6, =A, for all
ie{l,2,3}. Let OeCond\{A,AxA} and
assume that 6 # OHBi.Then QBiuB/ v, <0
forall i e {1,2,3}. TF (x, ) € 0 then {x, v} & B
for all i e{l,2,3} since 8 # 06’31 ; so, there are
1<i# j<3suchthat x € Bl.i;lnd Y € B, ; hence,
(x,y)e HB,UB, U6, where {i,j,k}=1{1,2,3}.
Therefore, 6 = O 0 .or =0, 5,
G,k =11,2,3}

Next, let f:(0,¢) > 5\/& where

U0, where

529&)0& and g:¢uABiuBl_ for all
0 € Con(B, UB.].;f|Biqu)and ¢ € Con(B,; f 15,).
6, € Con(B,UB; f,.,)
¢, € Con(B,; f | ) then auazav% for

If and

t €{1,2} . Thus, B is an order-embedding since

Silpakorn U Science & Tech J Vol.5(1), 2011

and (a,b) ¢ m;; so {a,b} ¢ B, U B, . We may

) Let

If {xy}© BUB,; or {x,yjc B,

assume that ae€ B,, be B , x,yeAd.
o (i

) then

(x,y)em,. 1If {x,y}z B UB and

{x, v}z B,

o (i)

iy Wemay assumethat x € B, U Ba(i)

and yeBozm; so, (x,a),(b,y)em, 0

implies (x,y) €@ . So, @ =Ax A. Finally, let
0 e ConA which ¢ m, for all ie{1,2,3}.
There are (a,b)e@, (c,d)ef, (p,q)eb,
(a,b)ygm,, (c,d)gm,,, (p.q) ¢ m,, for

ie{l,2,3}. Hence, ae B, UB beB., .

a(i)>

ceB . UB

() deBl.,peBaz()uBl. and

o)’ i

geB If aeB,, the cyclically of f and

o(i) "
(a,b) e @ implies that (x,y)e@d for all
x,yeB L Bazm .But (p,q) € 6, we have either
(s,¢) €0 forall s,te B, , U Bgz(i) or (s,t) el

forall s,t € B, U B, . Inany cases, (s,7) € 0 for

0.8)c(0,.6,) & 6,cO,and gc¢ & 0UdchUg

= 01v¢71g9_2\/¢72

For each ie{l,23}, let C, be a

sublattice of ConA which is isomorphic to
Con(B, V Boys f lyca, ) ¥ Con(B i f )
where {i, j,k} = {1,2,3} and let m, be the greatest
element of C,. We will show that m,,m, and m,
are the only co-atoms of ConA . First, m, # Ax A
for i € {1,2,3} since (x,y) & m, for all iiand all
xeBand ye Bazm . Secondly, let i€ {1,2,3}

and m; € @ < Ax A.Then, there exist (a,b) € 0

29

< p6,.4) < p6,.9,)

all s,¢ € A.Hence, @ = Ax A.We can also prove
that @ = Ax 4 similarly if a € B, ,, .

Clearly, m,vm,, =AxA4, for all
ie{l,2,3}. Let m be the greatest element of
the sublattice C = ﬁCi . It is clear that m is
the greatest lower li;(l)und of {m,,m,,m;}. So,
{m,m,,m,,m;, Ax A} is a sublattice of Cond
which is isomorphic to M. Therefore, ConA is

not distributive.
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Note that : if 8,¢¢€ Cond with pc O
then 6,9 € C, for some i< {l,2,3}. We will
now show that Cond has no sublattice which is
isomorphic to N;. Let 8,$,¢9 € Cond such that
pcO, ¢| 0 and @| ¢. Then, 6,9 C, for
somel <i<3.1If ¢ € C,, the distributivity of C,
implies that pA@#O A@ and v =0V .
If peC, for some 1< j#i<3 then peC
implies that A @#O0 A @ and pv =0V @;
and if e C;\C then e C,\C and ¢geC

imply that Ove=4AxA4 and ¢gveo=m,;

so, ¢vecOdve; and 6,pcC\C
impliesthat  0=6; , UeBgzm and
P=Qp 5 IO, which also imply that

o) %))

Onp= (QB,UB(,(,-) Vb, )N ((DB]-UBJ(,) Vs, )
o (i) ’ o ()
< (¢BI.UBO.(“ Y ¢B§2(i) ) M (gijuBg(/) v ¢B(72(j) )

= ¢ A @ . Therefore, Cond is modular.

Corollary 1 If a symmetric algebra A is congruence-
modular then there exist co-atoms m,,m, and m,
of ConA which satisfy the following conditions:

(i) for each i€ {1,2,3}, i«mi is one of the
lattices P, P®1 or (P®1)xQ where P and
Q are product of chains.

(i) the set {m,m,,m,,m;, Ax A} forms a
M, —sublattice of Cond where m is the greatest
element of ﬁiml .

i=1

Definition 1 A lattice L with the greatest element

1 is said to be a M, -head lattice if
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(i) L contains exactly three co-atoms m,, m,
and m, where J«mi satisfies Condition (i) of
Corollary 1 for all i € {1,2,3}, and

(ii) The set {m,m,,m,,m,,1} formsa M, —

sublattice of L where m is the greatest element of

\dm,.

We have the following characterizations.
Theorem 1 The followings are equivalence for a
symmetric algebra A

(1) A is congruence modular,

(ii) Conditions (i), (ii) or (iii) of Proposition
3 are satisfied,

(iii) ConA is either a product of chains , a
linear sum of a product of chains with one element

chain or a M -head lattice.

All lattices which are congruence lattices of
modular near-symmetric algebras.

Let f be a unary operation on a finite set 4
with A(f) =1 which we will call 4=(4;f),a
near-symmetric algebra. The first proposition proves

a characterizations of f .

Proposition 5. The followings are equivalent for a
near-symmetric algebra 4 = (4; f).

(i A(f)=L

(ii) There is a ¢# B A such that
BNIm f =¢ and f|A\B is a permutation.

(iii) Im f < 4 and f |Im ; is a permutation.
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(iv) Infc A and BNIm f is a one-
element set for all B e %er £
Proof. Let A(f) =1. Then Im f < 4; so, there is
a@#Bc Asuchthat 4A=BUlm f isadisjoint
union and f ‘Im i is a permutation.

If (ii) holds, then Im f < A\B — A . Since
f|A\B is a permutation and Imf|A\B clmf,
we have A\Bc Im f. So, A\ B=1Im f.Hence,
f | 1m 1S @ permutation.

Assume that (iii) holds. LetBe%erf.
Then f(B)={c} for some c € A. Sincef|lmf
is a permutation, BN Im £ is singleton.

From (iv), we have f |Im ;18 a permutation;
with

and together Im f < Aimply that

A(f)=1. 0

We note that Cond = {A ,,V ,} for all two-
elements algebras A, so we will consider algebras

whose cardinalities are more than two.

Proposition 6. Let A be anear-symmetric algebra
with | 4]>3.

) If A is congruence-modular then %er f
contains only one block whose cardinality more than
one.

(i) If A is congruence-distributive then
|Im f|= 4] -1.

Proof. Let A be congruence-modular. Proposition
5 tells the existence of the blocks B,,B,,..., B,

whose cardinalities are more than one for some s > 1
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and B, NIm [ for all blocks in %er r Let the
permutation f |Im  be a product of disjoint cycles
a,,a,,...,a, forsome r 22.1f s 2 2, then| B, | > 1
and| B, | >1;hence, f(B)) ={b,} # {b,} = f(B,);
so,thereare u € B, and v € B, suchthat u,v ¢ Im f
and there are a, # a, such that a, € B, "Im f for
i €{l,2}; thus, a, and b, are in the same cycle for
ie{l,2}.Let C be the union of cycles containing
{b,,b,}. Then the congruences A, < 8(C)c
(C)uB(u,v), ker f, and O(C)vker f will
generate a sublattice which is isomorphic to N, a
contradiction. So, s =1.

IfA is congruence-distributive, Part (i)
implies that %{er f contains exactly one non-
singleton block B. Since the least congruence
O(x,y), 8(y,z) and O(x,z) will generate a M,
B|=2.
Im f|= | 4|-1. m

-sublattice if x, y,z are distinct in B; so,

Hence,

Proposition 7. If A is a near-symmetric
algebra with | A|>4 and |Im f|= 4| -1, then
ConA = 2xCon(Im f; f).

Proof. Let B be the only block of %(er f whose
|B|=2. Then f(u)= f(b) forall ueB\Im [
and b€ BN Im f. Then 6 U {(u,u)} € Cond and
0 =0U{(x,y)|
all @ € Con(Im f; f). So, themap g :(1,0) > 0
and g:(0,0)> 6OuU{(u,u)}
embedding from 2x Con(Im f7; f) into ConA.

x,ye[bl, Viu}} e ConA for

i1s an order-

Now, let @ € Cond. 1f [u], is singleton,



Silpakorn U Science & Tech J Vol.5(1), 2011

¢ =0\{(u,u)} € Con(Im f f) and g(0,p) = 6;
and, if [u], is not singleton, f(u)= f(b) for all
be BNnIm f;so, g(l,p)=6 where ¢ is the
corresponding congruence to the partition of Im f'
containing the block of f(u). Therefore, g is an
order-isomorphism.

Note that if |Imf| = A|-12>3, then the
results in Remark 2 implies that Con(Im f’; 1) is
not distributive. So, if [Im f| = 4| =123 or £|,,,

is an identity, the proof of Proposition 7 shows that

ConA is not distributive.

Theorem 2. The followings are equivalent for a
near-symmetric algebra 4 whose | 4|> 4.

(1) A is congruence-distributive.

(ii) |Imf|:|A|—l and (Imf;f) 1is
congruence-distributive.

(iif) [fm f|=| 4] 1 and f|

my 18 one of (i)
or (i) of Proposition 1.

(iv) ConA is either 2x P or 2x(P®1)
where P is a product of chains.
Proof. (i) = (ii)is clear from Proposition 7 and
(Im f; /) is congruence-distributive. (if) = (iii)
follows from Proposition 1 and the argument
after Proposition 7. (iii) = (iv) is clear from
Proposition 1, Proposition 4 and Proposition 7.
Finally, (iv) = (i) because the lattices 2x P and
2x(P@®]1) are distributive if Pis a product of

chains. |

Proposition 8. Let 4 be a near-symmetric
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congruence-modular with| 4 |> 4. Then

(i) [Im f|= A|-1 or [Im f]= 4| -2,

(ii) if  [Imf|=4|-1  then
ConA = 2xCon(Im f; f), and
(iii) if |Imf|=A4|-2, then

Cond = M, x Con(Im f; f).

Proof. Suppose that Imf| <] A|-3. There
are distinct a,b,c,d e A with f(a)= f(b)
= f(c)= f(d). So, the congruence €(a,b),
O(a,b)yub(c,d) and O(a,c)ul(b,d) will
generate a N, —sublattice, a contradiction. But,
|Imf| < A|-1 implies |Imf| ={A|-1 or
|Im f| =| 4| —2. One can see that (ii) follows from
Proposition 7. We assume that |Imf| = A|-2.
Then, %(er f contains only one non-singleton
block B. If |B| =2 then |Imf| =A|-1, a
contradiction. If |B | > 4,, the proof of Proposition
8 (i) implies a contradiction. Hence, |B| =3.

Let B ={a,b,c}. Then f(a)= f(b)= f(c)
and because |Bmlmf| =1, we may

ceBNIm f. Now, the set

M, ={A,,0(a,b),0(b,c),0(a,c)0(B)} forms

assume that

a M, —sublattice of ConA. Note that for each

¢ € Con(B; f| ) 0 e Con(Im f; f)

the relations ¢7:¢u{(x,x)|xelmf} and

and

0= 6’u{(x,x)|x € Blare in Cond. Now, let
a:M,xCon(Im f; f)— ConAd and
B:Cond — M, xCon(Im f; ), by a(4,0)
=pvO for all (4,0)e M,xCon(Im f; f)
and  B(0) (0],.6],,,) for all @eCond,

define
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respectively. By routine work, one can prove

that aoff=id and foa=id,

Cond 3xCon(Im f5 )

Therefore, Cond = M ,xCon(Im £ 1). O

Lemma 1. Let A4 be a near-symmetric algebra
whose | 4|>6 and either|Imf| = A|-1 or
|Imf| = A4]|-2. Iff|1mf is an identity, Cond
is not modular. O

We have the following characterizations.
Theorem 3. The followings are equivalent for a
near-symmetric algebra A4 whose | 4|> 4.

(1) A is congruence-modular.

(i) (Im f; f)is congruence-modular and
either |Imf|:|A|—1 or |Imf|: | A]|-2.

(iii) f|Imf is one of (i) or (ii) or (iii) of
Proposition 6 and either |Im f | = A|-1or |Im f | =
| A|-2.

(iv) ConA is the lattice 2x P, 2x (P ®1),
2xL, M, xP, M;x(P®1) or M, xL where
Pis a product of chains and Lis a M,-head

lattice. O
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