
Silpakorn U Science & Tech J
7 (2) : 36-45, 2013

Research Article

ISSN 1905-9159

Test Case Based Selection for the Process of Software Maintenance

Adtha Lawanna

Department of Information Technology, Faculty of Science and Technology,
Assumption University, Bangkok, Thailand

Corresponding author. E-mail address: adtha@scitech.au.edu

Received March 29, 2013; Accepted August 7, 2013

Abstract
	 Software maintenance is the special process in the software-development life cycle. Particularly, the
programmers have tried to reduce the size of testing and maintaining new software while fixing bugs is
also realized. The large amounts of tests may cause time consuming, especially execution and operation. In
response to this, many specialists propose the techniques for test case selection such as random selection
and safe selection relying on the concept of regression testing. However, the ability of the new software
is still required to be improved. Therefore, the test case based control-path is preferred to increase the
performance of the program by creating and selecting the least test case as well as the faultless rate is
preserved.

Key Words: Software Development Life Cycle; Software Maintenance; Regression testing

Introduction
	 Due to the body knowledge of software
engineering, this becomes an issue in developing
programs. Up to now, most of the development
teams are still creating new software for responding
to the needs of users to support business objectives
in their organizations (Carmel, 1995). In response
to this, the software-development life cycle
(SDLC) is powerful methodology that helps the
programmers to produce the specific software,
e.g., waterfall, iterative, prototyping, and spiral
model (Larman and Basili, 2003). As we know,
SDLC comprises the phase of user requirement,
analysis, coding, testing, implementation, and
maintenance (Cohen, 2010). User requirement is

the phase for gathering the needs and wants from
users in details. After this is the step of analyzing
the specific problem as well as preparing a good
design, including data flow diagram, entity
relationship, and database. Later, the programmers
write the software, which is good or not depending
on their skills and experiences. Next, is to monitor
and correct the program, e.g., testing quality of
software, entire system, and user satisfaction.
Finally, in the process of SDLC is the software
maintenance. The maintenance process is one of
the most important phases in SDLC; particularly,
it is designed to plan and control the new program
in the entire system after adapting the existing
software (Leau et al., 2012). The term maintenance

Silpakorn U Science & Tech J Vol.7(2), 2013A.Lawanna

37

includes fixing bugs, modifying, updating deleting,
or adding some piece of the software. Modifying
software may be required for adapting the system
to the changes, e.g., technology, environment, or
trend of customer life style. This paper considers
those changes, including specification requirement,
line of codes, and bugs. Sometime modification
easily can be done, whereas there are few bugs
occurred within the modified program. In general,
bugs will be occurred, whenever the programmers
do coding. On the other hand, modification may
fail, in which the skills and experiences of the
experts are involved e.g., the knowledge of
programming languages, merging the difference
codes, and the configuration (Chapin et al., 2001).
As well as updating the software, the programmers
may consider all functions and types of the
program for selecting the important modules in
order to improve its ability. The most difficulties
of updating software are to change the previous
programming language to the new and integrate
the structure of the difference codes, including
testing the entire system.
	 The research area of software maintenance
concerns the test suite selection, minimization, and
prioritization. The techniques of test suite selection
can be used to determine the numbers of the test
cases from a test suite (Harrold et al., 1993 ;
Harrold, 1999). Particularly, any test suite contains
a set of test case, which is created relying on the
specific factors e.g., requirements, codes, and bugs.
More specifically, another purpose of software
maintenance is to preserve the faultless within
the changed program (Niessink, 2000). Those
factors affect the entire software system in terms
of executing and running the modified software.
The execution time is a major problem when all
test cases are audited as well as the running time
(Musa, 1993). As we know, the higher numbers

of the test cases often show the better abilities of
the new software, whereas the faults are small.
However, the maximum numbers of the test cases
increase the execution time. Therefore, many
researches propose the techniques that select the
minimum numbers of test cases as well as fixing
bugs within the new software.

This paper presents the technique that can
solve the remained problems by selecting the
lower numbers of test cases while the faultless rate
is preserved than the traditional technique. The
proposed model concerns the subject programs,
specifically used in the area of selecting test
cases and decreasing the faults of the software. In
addition, this paper shows some of the traditional
techniques, which are used to compare their
abilities.

Materials and Methods
	 Data set
	 Preparing the experiment is one of the most
important methods. Accordingly, the data set is
required. In Table 1, the seven subject programs are
required whereas the program name, numbers of
function (F), lines of code (C), faulty versions (V)
and the test suites (T) are available (Rothermel and
Harrld, 1998). To manage a test suite and automate
test execution, a test database management
system is created, and playback tools are captured
(Rothermel, 1996). Those subject programs are
written by the developers of the Siemens suite of
programs with manually fixing bugs or faults. The
artifacts of all seven programs have consequently,
been revised and extended by other agents. These
programs are preferred because of the development
of the related artifacts as well as the historical
significance. Numerous high-quality experimental
software engineering researchers have used the
Siemens suite (Ostrand, 1998).

Silpakorn U Science & Tech J Vol.7(2), 2013 Test Case Based Selection for the Process of Software Maintenance

38

Table 1 The Subject programs

Program Numbers
of function(F)

Line
of codes(C)

Faulty
Versions (V)

Test
Suite (T)Name

print-tokens 18 402 7 4,130

print-tokens2 19 483 10 4,115

replace 21 516 32 5,542

schedule 18 299 9 2,650

schedule2 16 297 10 2,710

tcas 9 148 41 1,608

totinfo 7 346 23 1,052

	 Regression Testing (RT)
	 Regression testing is the method of testing
changes within software or programs to ensure that
the existing system still work with the new changes
(Agrawal et al., 1993). Regression testing is a
basic part of the SDLC, especially in the software
maintenance. For the large companies, RT is done
by software testing specialists or programmers.
The typical steps of RT are described as follows:
	 (1) Select the test cases from a test suite.
	 A test suite is the set of the test cases, which
can be constructed automatically by the test case
generator.
	 },...,,,{ 321 nttttT = 		 (1)

	 Where: T is a test suite and t is the test case.
	 (2) Test the program (P) with the selected
test cases.
	 In general, a test suite contains huge amounts
of the test cases. Therefore, the developers select
some of the test cases for the process of software
maintenance, e.g., bugs and run time.

	 },...,,,{ 321 mttttt =∗ 		 (2)

	 Where: ∗t is a set of selected test cases
regarding the specifications requirements from
users and developers.
	 (3) If necessary, create new test cases for the

program.
	 If the selected test cases by (2) cannot cover
all the specifics requirements, then the new test
cases should be chosen for fixing this problem.

	 },...,,,{ 321 vttttt =∗∗ 		 (3)

	 Therefore, the total selected test cases equal
∗t + ∗∗t

	 These test cases form what becomes the
test bucket. Before releasing a new version of a
software product, the old test cases are also run
against the modified version in order to make sure
that all the exist capabilities still run. The reason
that they might not work is because modifying or
adding new code to a program can easily produce
bugs into code that may not have intended to be
made. Test department coders do program test
scenarios and exercises that will test new modules
of code after they have been written.
	 Researchers have tried to perform regression
testing more efficient and more effective by
preparing regression test selection (RTS)
techniques, but many problem remain, such as:
RTS techniques may save time and money,
however they sometimes may select most or all of
the original test cases (Leung and White, 1991).
Therefore, specialists using RTS techniques can
find themselves worse off for having done so

Silpakorn U Science & Tech J Vol.7(2), 2013A.Lawanna

39

(Ball, 1998). Testing time is often limited, e.g.,
must be finished overnight. RTS techniques do not
focus such problems and, hence, can select more
test cases than can be work. RTS techniques can
maximize the average regression testing ability
rather than optimize aggregate ability over many
parts of testing software.
	 Random Selection (RS)
	 Random Selection is the technique that
is created after the Testing All-Selection (AS) is
applied. The major benefit of AS is the minimum
numbers of faultless rate. However, it may cause a
big problem of time consuming. Therefore, many
development turns to the RS because it is simplest
and to avoid the high cost, including timeless
(Grave et al., 2001). The steps of RS are explained
as follows:
	 (1) Due to using the RTS, a test suite is
given.
	 (2) Randomly select the test cases from a
test suite.
	 This step can be done by a spreadsheet
Microsoft ExcelTM. For example, if there is a test
suite (T), the numbers of the selected test cases can
be computed by “=T(RAND())”.
	 Note: RS technique gives the least execution
time for module testing, but it may not guarantee
the ability of the program in terms of producing
the new bugs whereas the entire software is not
tested. More details can be found in the article of
Grave and team, 2001.
	 Safe Selection (SS)
	 Safe Selection is the technique an efficient
regression selection (Hutchins et al., 1994;
Rothermel and Harrld, 1996; Rothermel and
Harrold, 1997; Rothermel and Harrold, 1998). It is
one of the regression test selections implemented
as a tool called DejaVu. Specifically, this technique
provides smaller numbers of test cases compared
with AS, and RS. Another reason of using the SS is

the least of bugs are performed. This technique can
provide the better results in lower cost and timeless
in the process of execution and testing (Wong et al.,
1997). The steps of SS are explained as follows:
	 (1) Due to using the RTS, a test suit is given.
	 (2) Create a control flow graph (CFG) for
the program.
	 In a program, control flows are created
from variables and procedures, e.g. such as if- and
while-constructs in the programming language.
It is a representation of its possible control flows
through the whole program. Particularly, all nodes
correspond to statements and decisions, including
edges are used to represent the flow of control in a
code. Statement coverage is constructed in a test
suite that can execute every statement at least once
of a whole program.
	 (3) Test execution profiles and choose all test
cases in a test suite that, when executed through the
program.
	 (4) Exercise the program at least on
statement that is deleted from the program, or that,
when executed on the modified version.
	 (5) Exercise the modified program at least
on statement that becomes a new or modified in the
latest version.
	 The statement that does not exist in the
program cannot be executed. Therefore, the
selected test cases can be provided by exercising
the program or the modified version, which is
created to be safe.
	 The conceptual overview of the proposed
model namely Lawanna Selection (LS)
	 The activities in the process of software
maintenance and Lawanna Selection are shown
in Figure 1. The details of the whole steps are
described as follows;
	 (1) After the process of software-
development life cycle is reached, the software
will be released to the users.

Silpakorn U Science & Tech J Vol.7(2), 2013 Test Case Based Selection for the Process of Software Maintenance

40

	 (2) When the time goes by, users may need
the modified software. Therefore, the development
team needs the specification requirements from the
users in details.
	 (3) After this, the programmers will modify
the previous program regarding (2).
	 (4) Testers test the modified program, e.g.,
checking inputs, functions, and outputs of the
code, including fixing bugs.
	 (5) When faults or bugs are produced, it is
necessary to redo (4) again.
	 (6) Check the side effect of a whole program,
e.g., the relationship of variables, functions, and
the expected results such as the ability of running
the program, execution time, and user acceptance.
Particularly, this activity refers using the regression
testing.
	 (7) A test suite is given by (6), there are the
large amounts of the test cases are generated. This
causes the complexity of testing the software, the
consequence of corresponding failures, difficulty
of solving errors, and debugging the test cases.
In this research, the LS is proposed to solve the
problem about the increasing size of a test suite
by selecting few test cases, which can preserve
the competency of the whole program. However,
one problem can be occurred in LS, which is
producing the irrelevant selected test cases. These
test cases cannot be run properly or there are bugs
found. Therefore, to fix this problem is necessary
to regenerate the test cases again. Besides this,
LS technique needs to use the outcome of the
regression testing by realizing the major variables,
which are the value of F and C from the general
subject program. Come to this point, the modified
program will be released to the users, whereas the
whole processes are done.

	 Lawanna Selection (LS) concerns the
relationship of the numbers of function (F), line of
codes (C), and the faulty versions (V). Eq. 4 to Eq.
6 are shown as follows;

	 F = {1,2,3,...,n}			 (4)

	 C = {1,2,3,...,m} 			 (5)

	 V = {1,2,3,...,r} 			 (6)

	 In particular, not only the value of F, C, and
V are required by developers, but it includes the
user requirements and test case generator. This is
because they affect the size and quality of a test
suite and the competency of a whole program.

Deploy
software

Get
requirements

Modify
code

Test
the modified program

Create
regression test

Apply
Lawanna Selection

Unsolved problem

Errors

Release
new software version

Irrelevant test cases

Figure 1 	 The process of software maintenance
	 and Lawanna Selection

Silpakorn U Science & Tech J Vol.7(2), 2013A.Lawanna

41

 A set of the selected test cases is generated
and located in a test suite. One of the main
objectives is to get the small test cases by avoiding
the problem of run time. Next, LS can prepare the
higher reduction rate, including providing the least
faults or bugs in the modifi ed program.
 The conceptaul model of Lawanna
Selection (LS)
 The most important issue in the process of
software maintenance is to preserve faultless rate
of the minimal selected test cases in order to avoid
the bugs that can be occurred. In response to this,
the model of LS is proposed to build the concept
of selecting the relevant test cases in any test suite
of the program through the process of maintaining
software.

 Figure 2 shows the conceptual model of
the Lawanna Selection (LS). The process of LS
starts when the users require the updated program
for their purposes. Accordingly, the requirements
relate directly to the numbers of function (F), line
of codes (C), and numbers of bug (B). The general
problem of LS and many traditional selection

techniques involve creating a test suite. The reason
is the complexity of a program, which combines
all conditions of writing source code, e.g., user
requirements, numbers of function, inputs, and
expected outputs. Therefore, many researches
import a given test suite which is automatically
created by a specifi c test case generator. In the LS,
a test suite also can be generated by the software
named Reactis Tester. The test cases can be
generated by importing inputs and clearly steps of
testing in order to provide the appropriate output.
A relevant test case will give “pass” not “fail” at
the expected output. The most complicate part of
LS is to create the test case path or control-path.
Accordingly, the control-path shows the steps
constructed in each test case. The fi rst assumption
by applying LS is that the generated test cases
have their own steps of dealing with the different
inputs for checking the outputs (pass or fail). The
second assumption is the outputs of all generated
test cases are “pass”. The reason is that 100%
coverage is required. If “fail” is found, then that
test case will be rejected. Besides this, one of the
most important steps of the LS is to select the
appropriate test cases. Of course, each test case
may take the same or different steps for testing the
specifi c inputs. For LS, it needs the shortest steps
to be the representative. Surely, the expectation
of proposing LS is to select small amounts of the
test cases with 100 % coverage to avoid technical
errors and keep the specifi cation requirements.
 The experimental steps of LS
 (1) Defi ne a given test suite (TS)
 This step is created in order to defi ne a test
suite, which can be generated by Reactis Tester.
A test suite will be constructed by executing the
subject program, which the input and output values
are recorded at each step.
 (2) Generate the test cases.
 The test case template is created as shown in

Figure 2 The Lawanna Selection (LS)

Define a test suite

Generate the test case

Create the test case
path

The subject
program

Select the test case
The set of

selected test
cases

Silpakorn U Science & Tech J Vol.7(2), 2013 Test Case Based Selection for the Process of Software Maintenance

42

Table 2. It comprises the test case number, Input,
output, and step of testing. The test cases can be
generated regarding the percentage of covering the
specifics requirements. Due to defining a test suite,
it gives a test suite that contains the test cases with
different % coverage. In the experiment, only the
test cases with 100% coverage will be generated

Table 2 The test case template

Test Case
(No.)

Input
(1)

Input
(2)

… Input
(y)

Output
(1)

Output
(2)

… Output
(y)

Step (1)

Step (2)

…

Step (x)

in order to avoid producing the irrelevant test
cases (the coverage value is less than 100%). For
example, if there are x steps in test case (1), which
is constructed to handle y inputs, and all y outputs
can be produced and reported. This means the test
case (1) has 100% coverage. Therefore, test case
(1) is usable, if it is not 100%, it will be rejected
from a test suite.

	 (3) Create the control-path.
Assume that all inputs and output of a test case
are active. The numbers of step are realized for
creating the control-path. The good control-path
will show the least steps of testing. On the other
side, if the control-path (H) takes many steps, the
control-path may not be appropriate. The control-
path can be written as Eq. 7.

	 ()xStepH x = 			 (7)

	 Where; x is the number of step for testing a
test case. The shortest control-path has minimum
steps of testing the test case. Accordingly, a test
case with the minimum step is required.
	 Algorithm of creating the control-path

	 if)1(StepH = then

create 1H

else if)2(StepH = then

create 2H

	 else if)(xStepH = then

	 create xH

	 end if
	 Therefore, a set of the control-path,
H = {H1, H2, H3,...,Hx}
	 (4) Select the appropriate test cases.
	 According to the algorithm of creating
control-path, a set of minH is constructed. In
fact, the result of minH can show the test cases
number that has the minimum steps. For example,
if , then
					 . Therefore, the
numbers of the selected test cases equal to 5 or

5* =t .
	 (5) Find the reduction rate (RR) can be
written as Eq. 8.

	
					 (8)

	 The reduction rate is the ratio of the remained
test cases and a test suite.
	 (6) Determine the faultless rate (FR) can be
written as Eq. 9.

	
					 (9)∗

∗ −−=
t

BtFR 1

T
tTRR
∗−=

)}124(),100(),45(),10(),1({min tttttH =

)}124(),100(),45(),10(),1({* tttttt =

Silpakorn U Science & Tech J Vol.7(2), 2013A.Lawanna

43

	 The faultless rate refers to the possibility
of finding bugs in a set of the selected test cases.
Eq. 9 is required for evaluating the ability of
the comparative studies, e.g., RS, SS, and LS.
However, the value of B is assumed to be 1 for
the computation. This means every selected test
case should avoid the numbers of bug. In worst
situation, the only bug is allowed in a set of selected
test case. However, the bug needs to be fixed by the
programmer before the deployment.

Results and Discussions
	 In facts, there are many selection techniques
are developed for improving the performance of
eliminating the size of a test suite. In this paper,
there are three comparative studies, which are RS,
SS, and LS. This is because RS is the well-known
and simplest technique that is used in the part of
evaluating the ability of the comparative studies.
Another is SS, which is the powerful technique
in the field software maintenance. As we can see,
Table 3 shows the numbers of the selected test cases
by RS, SS, and LS. The numbers of the selected
test cases by LS are lower than others. Therefore,
one of the benefits of using LS is to provide the
smallest size of a test suite.

Table 3	 The numbers selected test cases of the
	 comparative studies

Program Name RS SS LS

print-tokens 382 318 67

print-okens2 299 389 76

replace 426 398 73

schedule 483 225 50

schedule2 57 234 56

tcas 203 83 50

totinfo 214 199 148

	 Table 4 presents the reduction rate of all
programs that can be computed by using Eq. 8. The

example of computing the reduction rate of LS on
the program named print-token is shown as; .

	 The results of finding the reduction rate due
to the same computation of RS and SS are 0.9075
and 0,9230 respectively. According to this result,
the reduction rate of RS is lower than SS and LS.
This is because the numbers of the selected test
cases are higher than others. Therefore, the second
contribution of LS is to provide the higher reduction
rate compared with the traditional techniques.

Table 4 	 Reduction Rate of the comparative
		 studies

Program Name RS SS LS

print-tokens 0.9075 0.9230 0.9838

print-okens2 0.9273 0.9055 0.9815

replace 0.9231 0.9282 0.9868

schedule 0.8177 0.9151 0.9811

schedule2 0.9790 0.9137 0.9793

tcas 0.8738 0.9484 0.9689

totinfo 0.7966 0.8108 0.8593

	 Table 5 shows the value of faultless rate of
the comparative studies, which can be calculated
by using Eq. 9. The example of computing the
faultless rate at least one bug found of LS on the
program named print-token is shown as;

 .

	 The results of finding the faultless rate due to
the same computation of RS and SS are 0.0026 and
0,0031 respectively. Regarding to Table 5, we can
summarize that the results of finding the faultless
rate of LS are higher than others. This means that
the probability of producing bugs in a whole set of
the selected test cases by using LS is less than RS
and SS.

9838.0
4130

674130 =−=RR

0149.0
67

1671 =−−=FR

Silpakorn U Science & Tech J Vol.7(2), 2013 Test Case Based Selection for the Process of Software Maintenance

44

Table 5 Faultless Rate of the comparative studies

Program Name RS SS LS

print-tokens 0.0026 0.0031 0.0149

print-okens2 0.0033 0.0026 0.0132

replace 0.0023 0.0025 0.0137

schedule 0.0021 0.0044 0.0200

schedule2 0.0175 0.0043 0.0179

tcas 0.0049 0.0120 0.0200

totinfo 0.0047 0.0050 0.0068

Conclusion
	 The Lawanna Selection model is the
alternative technique for the process of software
maintenance by using the concept of regression
test selection. It provides the process of selecting
the minimum numbers of the test cases while
the performance of the program is preserved.
Particularly, when compare LS with the traditional
techniques such as RS and SS. There are three
benefits of using LS. First, the size of the selected
test cases by using the LS is smaller than applying
the RS and SS. Second, it gives the higher reduction
rate than the traditional techniques. Third, LS gives
lower numbers of producing the new bugs than RS
and SS technique.

Reference
Agrawal, H., Horgan, J., Krauser, E., and Londo,

S. (1993) Incremental regression testing. In
Proceedings of the Conference on Software
Maintenance, 348-357.

Ball, T. (1998) The limit of control-flow analysis
for regression testing. In International
Symposium on Software Testing and Analysis,
143-242.

Carmel, E. (1995) Cycle Time in Packaged
Software Firms. Journal of Product
Innovation 12:110-123.

Chapin, N., Hale, J. E, Ramil, J. F., and Tan, W.
(2001) Types of software evolution and
software maintenance. Journal of Software
Maintenance and Evolution 13(1): 3-30.

Cohen, S. (2010) A Software System Development
Life Cycle Model for Improved Stakeholders’
Communication and Collaboration.
International. Journal of Computers,
Communications and Control 5(1): 20-24.

Harrold, M. J., Gupta, R., and Soffa, M. L. (1993)
A methodology for controlling the size of a
test suite. ACM Transactions on Software
Engineering and Methodology 2(3): 270-
285.

Harrold, M. J. (1999) Testing Evolving Software.
Journal of Systems and Software 47(2): 173-
181.

Hutchins, M., Foster, H., Goradia, T., and Ostrand,
T. (1994) Experiments on the effectiveness
of dataflow- and control flow-based test
adequacy criteria. International of Software
Engineering 16(1): 191-200.

Larman, C. and Basili, V. R. (2003) Iterative and
Incremental Development: A Brief History.
Journal of Computer 36(6): 47-56.

Leau, Y. B., Loo W. K., Tham, W. Y., and Tan
S. F. (2012) Software Development Life
Cycle AGILE vs Traditional Approaches.
International Conference on Information
and Network Technology 37(1): 162-167.

Leung, H. K. N. and White, L. J. (1991) A cost
model to compare regression test strategies.
In Proceedings of the Conference on
Software Maintenance, 201-208.

Niessink, F. and Van, V. H. (2000) Software
maintenance from a service perspective.
Journal of Software Maintenance and
Evolution : Research and Practice 12(1):
103-120.

Silpakorn U Science & Tech J Vol.7(2), 2013A.Lawanna

45

Musa, J. (1993) Operational profiles in software
reliability engineering. IEEE Software
10(2): 14-32.

Ostrand, T. and Balcer, M. (1988) The category-
partition method for specifying and
generating functional tests. ACM
Transactions on Software Engineering and
Methodology 31(6): 676 - 686.

Grave, T. D., Harrold M. J., Kim, J. M., Porter,
A., and Rothermel, G. (2001) An empirical
comparison of regression test selection
techniques. ACM Transactions on Software
Engineering and Methodology 10(2):
184-208.

Rothermel, G. (1996) Efficient, effective regression
testing using safe test selection techniques.
Technical Report Clemson University
96-101.

Rothermel, G. and Harrld, M. J. (1996) Analyzing
regression test selection techniques. IEEE
Transaction of Software Engineering. 22(8):
529-551.

Rothermel, G. and Harrld, M. J. (1997) A safe,
efficient regression test selection technique.
ACM Transactin of Software Engineering
6(2): 173-210.

Rothermel, G. and Harrld, M. J. (1998) Empirical
studies of a safe regression test selection
technique. IEEE Transaction of Software
Engineering 24(6): 401-419.

Wong, W., Horgan, R., London, S., and Mathur A.
(1997) A study of effective regression testing
in practice. In 8th International Symposium
on Software Reliability Engineering, 264-
275.

Wong, W. E., Horgan, J. R., Mathur, A. P., and
Pasquini, A. (1997) Test set size minimization
and fault detection effectiveness: A case
study in a space application. In Proceedings
of the 21st Annual International Conference
on Computer Software and Applications.
522-528.

