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Abstract

This research applied data mining and machine learning to develop a prototype “Thai-textual

Cyberbullying Detection using Support Vector Machines” that can be future online Cyberbullying social

media detection. Support Vector Machines (SVMs), K-Nearest Neighbour and Naive Bayes are selected to

use in our research. From the evaluation by Confusion Matrix, SVMs had the highest classification

accuracy as 83.91
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AT it;:uaammammmmmumwmasun
et iuInazuiauTuiinn Ty LLamewmu
wsAv 7 L6 Sunansemuunnuneandeleidea
ﬁ‘Lﬁ'EJLMa'ﬂTy WEF Global press release 1a'Lie
naidoszaulanludemadlesisavedland [1]
Taeszyd Winlveilemadssfoainesulavids (60%)
mmWﬁ'ﬂ'WLagaﬁﬂaﬂaﬂﬁ' (56%) G aTvoaulatives
mﬂlmwwummamu 4 UYszian e L.Cyber bullying
(49%), 2. mimmaaamnuauwmﬂmimmﬂmﬂu
wlanuilulanseulail (19%), 3. Aawnu (12%) Laz
4.g9naeareeniunuauwlannt (7%) aziiuladn
Cyberbullying lusinlneiududesiunduvag uas
é’aﬁmﬁqm’hﬁma?ﬁaﬂﬁagﬁ (47%) Bnme

Cyberbullying [2] Ai® mﬁumsﬁ'uwmmﬂaﬂ
ooulall S?fnm'i'i”qLLﬂﬁ?uLﬂu"LiJﬁgﬂugiJwam A156
78, N1NA1IN, NS D RUANAYAFNEIUATY 7B
8 ulaeidunisundsiinnzasyanaidivung wasd
wunltulunsSeundiseidswnnnimileeds denns
sz ansaind uldueenianisundaiuialy
waglulansauladiy faunluldind gty
\Whvieate 9 Tnenaainnnside 1Fes “Anugnuas
Jageii satestunisnduundsuulanlowes lu
syt 1.1-3” Taedumnusauiielussduuuni
14 Uszimaialan 314 140 uin i nlvedud
Uiza‘umim‘qﬂﬂﬁmmﬁasluﬁm'%qmmﬁa 80 % @
unnIUssmAsgvansgewEni glsu wazduda d
Wi IWEJ‘W‘U’J'”IEULL‘U‘UEL‘L!ﬂ’]i%JﬂLLﬁﬁWU’jWQﬂﬂi%ﬁ’]ﬂJ’m
fian Ao mslaudeldsuunznisgnisatendl 79.4%
nsgnifiniag laianila 54.4%uazauduliiensn 46.8%
AuRlen1sgnUasenddie n1sgnurzuludase gn
g wazn1sgnilinends auaeu tnedulng
WInde 89.2% Ldond azUSnwil eunnnndnauly
ATaUASTY wazdieAuasEnindedynus oanis
Cyberbullying vaswialan Faldsinsimuelsiuandd
3 v oudquisuduiunganisnduundauulan
aaulayl (Stop Cyberbullying Day) [4] el nu
I¥msenindtywmivent

Han153ITeISeq Cyberbullying classification using
text mining [5] ladinsiiausnisasrswuudiassiu
M3 uunUszLanYeInIsnduLndamdumesidaly
NSEUNUIAIEToAN (N 1¥8eNgwlagldignisii

wilestanu Feldauedaneifiuilide Support
Vector Machine tU5 8 UL #UA U Naive Bayes SZN
Naﬂ’li’gﬁlmﬂwmm’nﬁ Support Vector Machine ‘uu
TH A1 ULL U T 4419175 Naive Bayes hauil
AIUEIL5T 9 S IMUNUTZLANTBINITNE URAE 9119
Suwmesiialunmsaunuimedonuniwsings) 1o
Jueded wazdnnianidsvvedlveesnsinses
auAntun e inefsatunsSidudeeulay Tng
Tfunouisdnmesannmesuumiy (6] Ingldunaue
AsSeuisulssans MmnnsiasisiauAniu
Mwlng 2899an035% 4 M ek TnnesalInnesi
nu suldandula uduugd wasiadeisaiuues T
NNANITIVYNUINTANDIDUTNNBTNINIAB S UNTTUY
(Support Vector Machine) T sz @ ns aanlunns
Fuun audnuusiidgn fuiueuideluadedad
wwnAniazldinadanisadrauusiasddunssuwun

Jaanulagldidgnnesainmeswusdu unlely
Wawnuusasslunisasadudennunielnefidu
nanduundanslaivefuuade Tagliisdnwotn
LINABSLUTTU

2. ¥a9 gUnIal uadENIeY
2.1 mMssusudeya

FATeldinsifusiunudeya Fadudeniuuans
mmﬁmLﬁmaasﬂ%’?{aﬁ’mmaﬂaﬁﬁa Facebook ,
YouTube , Twitter La¢ Instagram ddunisuans
mmﬁmLﬁu@faqmﬂaﬁ'lﬂumzLLaaﬁﬂwﬂmmfu WU
A131 WnAun w3e fdemindne q 1dudu Ineld
w3eaile (AP) voed edsnuesulatdy 9 lunisis
JoanuuaninuAniukasihundanuliedlugures
IndFieed (CSV)

M19°99 1 fegedayainsiusula

Text

ﬁ;(ﬂﬂ@ﬂ...‘UENﬂ’J’]ZJGW@Lma{]’QvLﬁ

AUl Buarshivenuiludile

pauwva.. el damiseaulausils

nouwvall eanlUanninisonen.. ddoue
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Wuguenyeasuldgunduguinasu
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2.2 msdnguuuudaya
TunssuundennusansnuAaiuatelne i
Hunrsnduundanslsvesiu g3delAuenissuun
sandiu 2 dnwae leun dnvardoruiifunisnay
wndamslatued wardnvasdoanudildidunisndu
undensloiues Fefisdelsidonuuansaudniiy
A lnefiarursasiusiusauls u13msziany
Snvarildsuuniy Faavinseifiazdoninuingn
ogludnuaila Taslii3ormaduiinmsiesed
wazduiiniumssuulnadiesd (Csv)

2.3 ANSPBNLUUITNITIATILH
157197 2 N5 Class IAnuTaAINU

Text Class
4nBon.. U3 URBLIaYIls Yes
AUl Guazsnimvautuduily No
powva.. e uldiun S syaulaueds Yes
dmaunalll anluannenisonen.. ddoue Yes
< v P vy 1 & )
Jugwefimeasuldnunduguinasu No

NSLUIUNITNSWAILILUUT1a091UN1TATI9TU
Somumwilveiifunmsndunndmislsuesuasns
Wisuiudanasiui laidonumagou a1u1sa
oSuetunouldsEl

1ad (API) damrudauiu
afiuluing csv Text Normalization
2 .  E—
Hidiengy Nuunane
farnu Word Segmentation
Stop Word Removal
Feature Selection
Evaluation Performance Machine Learning
Compare Classification Prediction
Performance
| Classification ModelBuilder ‘

UM 1 sguiunsnsiauuiaedun1sngiadu
Fomnuns meidunisndusndsnalowes
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231 fupeunsiaisudeya (Data) Feusznauly

e

2.3.1.1 LAUSIUSILTBAULEAIAIUA ALY
PnruMsaTsRdnwazandedinusaulat Tagld
w3neile (AP) Tun1sistomnunansruAaiuain
YouTube uay Twitter haglin1sfsdoyanignuiog
911 Facebook wag Instagram uddatfululag csv

2312 1T vavgasiaasvaziiasizi
FomnuLansnAnTuTlEaIn Facebook, YouTube
, Twitter Lag Instagram WazIUUNANYULTBAINI
Judnwazdenufidunsnduundsmslawes wie
Snvazdenmuildidunsndunndamalaued uda
JaAululag csv

2.3.2 drdeyaiignszuiunisneuni (Pre-

Processing) Fausznouluse

2.3.2.1 Text Normalization yinsaudgydnual
fAvosnandonny deludidassuddaydnuales
mwlneuazfiavinafilaldesnissonu @, #, S, 9,
9,5 udusuistesing Lﬁaﬁﬁmsﬁagadawﬁuaaﬂ

2.3.2.2 113anA1 (Word Segmentation) N13
ﬁﬂﬁ’]ﬁ?ul,ﬂunssmuﬂ’]wé’ﬂLLasﬁmma"wﬁ’aﬁm%’u
awlng Jaazrhmsdadlfidugudnvazuuud
Wi (Single word) feisnnsdnfuuudenndaduin
W d A (Maximum Matching algorithm) Taegld
WaLIYNsY (Thai national corpus) Wufu3euiieu
Tngrwualidisnesvesmsiadidalauenainiy
aedyanuallud (|) udnhluduiinasulnddeya
csv
a1t 3 nsdRiieldlunssuunALAnLiy

Text Class
goleenjved/minymoualdals Yes
allupdullu|Suleg $n e aulduda)de No

mounalduldpun|Samiseauldugfe | ves

Blnounaloan(lu[anjenisaen|Gdy|ue Yes

uldene|fiala3ulldlginBuglunn|asy No

2.3.2.3 M3smdnAmign (Stop Word Removal)
Wunsihiilifanunnensesdlddveddalu
lenansean nefiaununevesdviedeninuazly
Wasuwdas Amgaszdsingludemnuyndeniny de
Amgadunudnvasilifauioidomislid
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Uselowd Tumssuunvanavydeay dafunissidn
Amgadadunszuiunsiiaasviineunisdavindai
e dnandnuaeilifuusslon uazanvuinves
Fuias §easdraUsendast ofl ui uaziaailunis
Uszulana

2.3.2.4 Yupounsdonqudnumy (Feature
Selection)

AudnwarTwILnulglunisUssaanay
T auazninenslunsszanananin daiuds
Fndudesdimsidenqudnvasiiielideyafivuin
anad uaresgdednuugd1Agyvesdoyauazaiiy
gréisemadnslvitestian dmiumadadiiunldly
nadonaadnuusinanemaia lunuideivssgnd
wailanisidenaudnuuemeIsnsniaiaunly lny
1438nslibmtnuesluenansuuy TH/IDF (Term
Frequency/Inverse Document Frequency) Faduis
ﬁiﬁ?ﬂisLﬁummé’wﬁmmaaﬁww%aﬂmﬁﬂwmzﬁu 9 Tu
wonansiidumatln (Training Set) fiavin Uing, Huang
and Shi, 2002) ﬂmé’ﬂwmzﬁﬁﬁﬁmﬁﬁ TF/IDF w10
NUBAIINT @mé’nwmzﬁ?uﬁﬂssﬁm%mwftumsﬁﬂLLuﬂ
LoNaTIINLAY SR YT TF-IDF Lans
Tuaun1si 1 uay 2

W(f,d) = TF(f'dl)Dlx IDF(f) (1)
IDF s = log D) 2

e Wity Ao Animiinvesnmdnume (f) 7
Usnglutenans (d)

TF £ q) Ao anudvesnudnuae () AUsnglu
LoN&s (d)

ID| #o f1uruienansisnualutoyayain
(Training Set)

INYEE FIUIUVBILBNAITT INUAT &
ANy () Usnged

N1INTUNARNANTNYULILNTLVINN1ENSIRN
Fuanuhuiin TF-IDF 139 IAgNTUNINAMAN WY
filofein TF-IDF galuwsiay Class Tnsyansiufuuas
gnadfisudadety anfuihaudnuusiidon
wadlegluguuuuvesuningionans (Document-

Terms Matrix) #991151991 4 neutiluasisuuudnaes
mewmaliansiteuiveunIes

= A
N9 4 LURINYLBNANT

Row 9 o) @2 | Class
1 0.212 0 0.453 Yes
0.122 0.422 0 No
0 0.312 0.453 Yes
n 0.233 0 0 No

2.3.3 N15d519WUUI1889lUN15TILUNT DAY
(Classification Modelbuilder)
le9ane3su Support Vector Machine (SVM), K-
Nearest Neighbour kag Naive Bayes Tun1531uun
fomnusendu 2 Ussiande Tennuiidunisndy
wndemslauas(ves) wasdomuiildifunsndunnds
malziues (No)
2347 unoun15n15UssLTuUsEANE An
(Evaluation)
2.3.4.1 ¥N5UTZIHUUIEANSAINUDIFITILUN
Wil agi a7 198anas5u Support Vector Machine
(SVM), K-Nearest Neighbour Waz Naive Bayes lag/ly
35 Cross-validation Test Li¥ 87118 1A NA B
(Accuracy) A1A1ULIUE (Precision) A1AINTEEN
(Recall) wazA1AUN AR (F-Measure) Yaaufays
FUUN
2.3.4.2 N1 euliiguUseans nnue e
Fuunusazdllagldrinnugndes (Accuracy) A1
ANULIUE (Precision) A1AUTEAN (Recall) wagan
A1U090@ (F-Measure) Yo sumazAaITuundudn
WSguiigu

2.4 nsusEEiuUsEaNS AW
nsUsEIliuysEansnmueswuudans agly Cross-
validation Test Ingvinnisuustoyasenilunansdiu
Tneilusiazdniisruudeyaindu wdnhdeyanis
il dudmaasulsydnsnmuadlang wavi
Toyadufiimdolatsluma vnaulduiauasy
Sruaufinudls udmwaumen Confusion Matrix A
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AUYNABA (Accuracy) A1AIUULUET (Precision) A1
AUsEAN (Recall) WagA1AINEWNA (F-Measure)
2.4.1 A1 Confusion Matrix

2.4.1.1 True Positive (TP) nun8is $1uuil
vunensafuteyasisluranadimdsionsan auns
True Positive rate = 2 True positive / 2 Condition
positive

2.4.1.2 True Negative (TN) w8 fs S1u7ud
viwensaiudeyassdlunatadluldmdaiaisan
aun17 True Negative rate = 2 True negative / 2
Condition negative

2.4.1.3 False Positive (FP) nunefie S1uaud
vureRadunaiaii tdeiasan aunis False
Positive rate = 2 False positive / 2 Condition
negative

2.0.1.4 False Negative (FN) visngdia $1uaudi
yuneinduaaiad llldmdsansan aunis False
Negative rate = 2 False negative /2 Condition
positive

2.4.2 A1 Precision uans S1UIUTIUIBNIIN
Fosyaftvivunedndunarad Aidsiansun aunis
Precision = TP / (TP + FP)

2.4.3 A1 Re-call wana S1uuteyadiviiuiegn
aun1s Recall = TP / (TP + FN)

2.4.4 ¢ F-measure o ANaA8T83 Precision wag
Recall @1n15 F-measure = [2(Precision x Re-call) /
(Precision + Re-call)]

2.4.5 @1 Accuracy Ag ﬁwunu%’amﬂaﬁﬁmwgﬂﬁum
NNAAIE @UNIT Accuracy = (TP +TN) / (TP + TN +
FP + FN)

2.5 nmsilFeuiisulszansaw

Mnssuiisuuszansnmasauuudiassiunis
asadutemumuiinedunsndunndmslaues
3¥171975 Support Vector Machine (SVM) 75 K-
Nearest Neighbour wag 7§ Naive Bayes 1ng
WiguiiguA1nugnees (Accuracy) ANALLAILEN
(Precision) A1A15EAN (Recall) waTAIANAINAA
(F-Measure) Mnldanndneduvesiiasds ilom3ad
Fitan

q
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3. NANNTIIY
3.1 prsfuanguvasdanIw
NuAtEliTuTmteruandedinuesulatiiay
Ifinsudsngudenmeenidu 2 ngu fedeanui
Hun1sndunnds (ves) wazdoninudiliidunisndu
wnas (no) Iﬂﬂﬁﬂa;uﬁaasmﬁu’wm 1,100 98A31Y 19g
T 3envglunsinnesisasivunnauvesiany
Feanunsamaualdsad dennudiunisnduunds
(yes) 538 Yann1u wartemudildidunisndunnds
(no) 562 TaA11

3U# 2 ngudeanuaindedsnueaulal

3.2 wan13UsELiiunssauiA8danasnu Support
Vector Machine (SVM)

A15197 5 nansUszidunsiiousiiedaneisy
Support Vector Machine (SVM)

Accuracy | Precision | Recall F-
Measure
2 80.69
Fold 80.69 % 81.19 % % 80.94 %
3 81.16
Fold 81.27 % 81.53 % % 81.34 %
4 82.79
Fold 8291 % 83.28 % % 83.03 %
5 82.31
Fold 82.45 % 82.95 % % 82.63 %
6 83.80
Fold 83.91 % 84.23 % % 84.01 %
7 83.76
Fold 83.91 % 84.46 % % 84.11 %
8 83.42
Fold 83.55 % 83.94 % % 83.68 %
9 83.01
Fold 83.18 % 83.93 % % 83.46 %
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Accuracy | Precision | Recall F-
Measure
10 83.13
Fold 83.27 % 83.83 % % 83.47 %

1NN1TNARBINITLITEUT AI8TANBTTYL Support
Vector Machine (SVM) esuundenruniwlved
Junisnduundwslsivesiaeynisnaaeusieis
e

78 2-fold cross validation @1u15aUsgIdU
UsAvsnmlédsi AAccuracy Senegit $ovax 80.69
A Precision ﬁﬁmgjﬁ%’aaaz 81.19 ¢ Recall deineg
fi¥ouay 80.69 LazA F-measure A0y 7 fouaz
80.94

7§ 3-fold cross validation @1115aUsgiiu
UsyAvsnmlédsi AAccuracy Senogil Sovay 81.27
A Precision ﬁﬁ?@&jﬁ%@ﬂﬁ% 81.53 A1 Recall deinag
#i3ouay 81.16 wazA1 F-measure ﬁﬂ'waq'ﬁ'%faaas
81.34

7§ 4a-fold cross validation @1u15aUsgIdU
Usgavsnwlgsiedl ArAccuracy ﬁmagjﬁ Soway 82.91
A Precision ﬁﬁmgﬁ%’aﬂax 83.28 A1 Recall deinag
fi¥ouay 82.79 uazA F-measure A0y 7 fouaz
83.03

7§ 5-fold cross validation @1u1saUseiiu
UsrAvsnmléwsi AAccuracy Senegil Sovax 82.45
A Precision ﬁmasjﬁ%aaaz 82.95 A1 Recall Hrag
fi¥ouay 8231 uazA F-measure A0y 7 fouaz
82.63

7§ 6-fold cross validation @1u15aUsgidiu
Usgavsnwldsiedl ArAccuracy ﬁmaq'ﬁ Soway 83.91
A Precision ﬁmagjﬁ%@aax 84.23 ¢ Recall dfneg
fi¥ovay 83.80 uazA F-measure A0y 7 Souaz
84.01

3§ 7-fold cross validation @1u15aUsziiu
UszAvBamildiall AnAccuracy Sidnegil $ovay 83.91
A" Precision ﬁmag:ﬁ%aﬁlaz 84.46 A1 Recall ﬁﬂ"]agj
fi¥ovaz 83.76 uazA F-measure 1A10¢ 7 Sovaz
84.11

76 8-fold cross validation @1u15aUsgLIdU
UsAvsn st AAccuracy Senegil $ovax 83.55
A Precision ﬁﬁmgjﬁ%@aax 83.94 A1 Recall difag

| o

A¥ouaz 83.42 uazA1 F-measure fiA10¢ 7 Yo8ay
83.68

75 9old cross validation @1u15aUsgiiiu
UsrAnsn il AAccuracy Srnogil Sovay 83.18
/i Precision fiAneejfifosay 83.93 f1 Recall fidog
Ai¥ovay 83.01 LA F-measure iAoy ovaz
83.46

75 10-fold cross validation @1u1saUseiiiu
Useansamlddsi AnAccuracy fidnegiisosay 8327
A Precision fiAnegfifosay 83.83 1 Recall fidog
Ai¥ovay 83.13 LazA1 F-measure iAoy 7 Sovaz
83.47

3.3 wan1suszifiudszdnfaannisiseus aae
ganasod K-Nearest Neighbour

A9afl 6 wansUsziiuUsEAnSaimnsiseuise
dane3ou K-Nearest Neighbour

Accuracy | Precision | Recall F-
Measure
2 74.18 % 76.18 % | 73.87% | 75.00 %
Fold
3 7291 % 74.95 % 72.58 73.74 %
Fold %
4 73.82 % 76.99 % 73.43 75.16 %
Fold %
5 73.18 % 76.69 % 72.77 74.68 %
Fold %
6 72.82 % 76.96 % 72.38 74.59 %
Fold %
7 72.27 % 76.21 % 71.83 73.96 %
Fold %
8 72.45 % 76.61 % 72.01 74.23 %
Fold %
9 7191 % 76.04 % 71.46 73.68 %
Fold %
10 72.27 % 77.18 % 71.79 74.39 %
Fold %

I1NN1INARBINITTEUFA88aNDTNN K-Nearest
Neighbour tilasuundaninuniwilvedidunisndu
undsnsloweslnevinisnedeusieiss

7§ 2-fold cross validation @11150UsgLiu
UsrAnsn i AAccuracy firnogil Sovay 74.18
AN Precision ﬁﬁ’lagfﬁ%aaaz 76.18 A1 Recall ﬁﬁﬂ@&qj
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| o

fi¥ouaz 7387 uazA F-measure A10¢ 7 Sovaz
75.00

15 3-fold cross validation @ u1saUsziiu
UsAvsnmlédsi AAccuracy Senegit $ovay 72.91
f1 Precision ﬁmagjﬁ%}aaax 74.95 f1 Recall dpnag
fi¥ouay 72.58 uazA F-measure iAoy 7 Souaz
73.74

16 d-fold cross validation @1u15aUsziiiuy
UsyAvsn il AAccuracy Senogil Sovay 73,82
f1 Precision ﬁﬁ?@&jﬁ%@ﬂﬁ% 76.99 A1 Recall deinag
f¥00av73.43 wazen F-measure fiA10¢ 7 $ovas
75.16

15 5-fold cross validation @ u1saUsziiu
UszAvBaml#all AnAccuracy fienagil Sovar 73.18
f1 Precision ﬁﬁ?@&jﬁ%@ﬂﬁ% 76.69 A1 Recall deinag
fi¥ouay 72.77 uazA F-measure A0y 7 fouaz
74.68

16 6-fold cross validation @1u15aUsziiiy
UsyAvsn s AAccuracy Senogil Sovay 72.82
f1 Precision ﬁmasjﬁ%aaaz 76.96 ¢ Recall deineg
fi¥ouay 72.38 uazA F-measure A0y 7 fouaz
74.59

15 7-fold cross validation @ u1saUsziiu
Uszansamlded ArAccuracy ﬁmagjﬁ Jowag 72.27
1 Precision ﬁﬁmgﬁ%’aﬂax 76.21 A1 Recall deinag
fi¥ovay 71.83 uazAn F-measure A0y 7 Souaz
73.96

716 8-fold cross validation @1u15aUsziiiuy
UsgAvsnmlédsi AAccuracy Senegil Sovaz 72.45
f1 Precision ﬁﬂ'ﬂagjﬁ%aaax 76.61 AN Recall ﬁﬂ"]agj
fi¥ovaz 7201 uazA F-measure dA10¢ 7 Sovaz
74.23

716 9-fold cross validation @1u15aUsziiiu
Usgavisnwldsiedl ArAccuracy ﬁmaq'ﬁ Soway 71.91
f1 Precision ﬁmagjﬁ%@aax 76.04 f1 Recall deinag
fi¥ovay 71.46 uazA F-measure A0y 7 Souaz
73.68

15 10-fold cross validation @1u15aUsg iy
Usgavsnldad ArAccuracy ‘ﬁmag’ﬁ%faaas 72.27
#1 Precision ﬁmagj‘ﬁ'%@aaz 77.18 A1 Recall ﬁﬁ’lagj
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| Ay

i ¥e8ay 71.79 uagA1 F-measure iA108 1 0uay
74.39

3.4 wanisusidiudsedniaiwnisiseus aae
9ano35u Naive Bayes
Asafl 7 wannsuszifiulszansainnisiseuise
dane3ou Naive Bayes

Accuracy | Precision Recall F-
Measure
2 73.64 % 73.71 % 73.55 73.63 %
Fold %
3 74.36 % 74.39 % 74.30 74.34 %
Fold %
4 75.82 % 75.88 % 75.74 75.81 %
Fold %
5 74.27 % 74.29 % 74.22 74.25 %
Fold %
6 74.64 % 7471 % 74.55 74.63 %
Fold %
7 74.09 % 74.12 % 74.03 74.07 %
Fold %
8 74.55 % 74.60 % 74.47 74.53 %
Fold %
9 74.27 % 74.35 % 74.19 74.27 %
Fold %
10 75.27 % 75.32 % 75.20 75.26 %
Fold %

INN1TNARDINITITEUT AI8TaN0I N Naive
Bayes Wi mundeninunwinefiifunisnduunds
misleveslagvnmsnadeusaeisa

716 2-fold cross validation @ u15aUsgLiu
UseBvisnldst AAccuracy ﬁﬂ'wagj‘ﬁ' Sovay 73.64
A1 Precision ‘ﬁmaq'ﬁ%lasaz 73.71 f1 Recall denag
Ai¥ouay 73.55 uazAn F-measure iAoy Sovaz
73.63

76 3fold cross validation @1u150U5g 18U
UsrAvsn s Aaccuracy Senogii Sovar 74.36
A" Precision ﬁﬁﬂasviﬁ%'aaaz 74.39 A1 Recall ﬁﬂlﬁagj
A¥e8az 74.30 uazA1 F-measure fA108 7 Youay
74.34

716 da-fold cross validation @1u15aUsg iy
UsrAvsn il AAccuracy Tenogil Sovay 7582
f1 Precision ﬁﬁﬂa?g:ﬁ%aaaz 75.88 f1 Recall dfineg
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| o

fi¥ovay 75.74 uazAn F-measure A0y 7 Souaz
75.81

7§ 5fold cross validation @1u15aUseiiiu
UsrAvsnmlédsi AAccuracy Senogil Sovay 74.27
fin Precision fiAnegfifosay 74.29 1 Recall fidnog)
fi¥ovay 74.22 uazAn F-measure A0y 7 Souaz
74.25

7§ 6-fold cross validation @1u1saUseiiiu
UsyAvsnmlddsi AAccuracy Senegil Sovax 74.60
/i Precision flAogisoras 74.71 An Recall fifog
fi¥ovay 74.55 uazA F-measure iAoy i Sovaz
74.63

7§ 7old cross validation @1u1s0Useiiiu
UszAvBaml#all AnAccuracy fienagl Sovay 74.00
/i Precision flAogisoras 74.12 AN Recall fiAog
fi¥ouay 74.03 uazA F-measure iAoy 7 fouaz
74.07

7§ 8fold cross validation @1u1saUseiiiu
UsAvsnmlédsi AAccuracy Senegit Sovax 74.55
fin Precision fiAnegjfifosay 74.60 A1 Recall fidnog)
fi¥ouay 74.47 uazAn F-measure fiA10y 7 fouaz
74.53

7§ 9fold cross validation @1u150UseLiiu
UszAvBaml#all AAccuracy enagil Sovay 74.27
fn Precision fiAneefifosay 74.35 A1 Recall fidnog)
fi¥ovay 74.19 uazAn F-measure A0y 7 Souaz
74.27

78 10-fold cross validation @1u15aUseiiiu
UsyAndnlaasid ArAccuracy fidnegiisosay 75.27
A1 Precision ﬁﬂ'ﬂagjﬁ%aaax 75.32 ¢ Recall deineg
fi¥ovaz 75.20 uazA F-measure 1An0¢ 7 Sovaz
75.26

3.5 wan1stUSeutiisuysziiudseans nnsenang
9ana3 sy Support Vector Machine (SVM) |, K-
Nearest Neighbour waz 8ana3ou Naive Bayes
Pnwanmnaaedtunsieuslingnismaaeuieis
6-fold cross validation 8ana3 7 Support Vector
Machine (SVM) T3ian Accuracy , Precision , Recall
Lag F-Measure 71 §ouay 83.91, 84.23, 83.80 uax
84.01 MuaIAU %qqdé’aﬂﬁﬁu Naive Bayes 71l

Accuracy, Precision, Recall ag F-Measure ﬁ%@aax
74.64, 74.71, 74.55 uay 74.63 MUAIAU Lavdage
ndanesiiu K-Nearest Neighbour #iliAn Accuracy,
Precision, Recall kag F-Measure ﬁiéjaaaz 72.82,
76.96, 72.38 way 74.59 MAUEINU 5197 8

A151990 8 wan1stUSeuLsuUseidudsyansaaw
3¥111199an0354 Support Vector Machine (SVM) , K-
Nearest Neighbour uag 9anesou Naive Bayes

Support Naive K-Nearest
Vector Bayes Neighbour
Machine
Accuracy 83.91 % 75.82 74.18 %
%
Precision 84.23 % 75.88 76.18 %
%
Recall 83.80 % 75.74 73.87 %
%
F- 84.01 % 75.81 75.00 %
Measure %

4. afusenanazagy
4.1 d3UNan15Y
sAdedldhiauenisauiuuusiasslunis
prdudenrmnwninedifunsnauundmmilaves
logldIfdnnadainines uuvdu luniswmun
LuudasusudunTuTIndeya Tinszideyadi
FIVTW NMIARAINTHIINEY Lagnsridndngn At
Wanwvusiasaui edmundeya uagiuisuiiou
FanosfuileUssidiulszdvinmlunisduundonii
s alud1ua11ugnd o9 (Accuracy) A28 UL U
(Precision) Ausedn (Recall) wagA1Auama (F-
Measure) %ﬂﬂizﬂauﬁwé’aﬂa?ﬁu Support Vector
Machine (SVM) §ano373 K-Nearest Neighbour wag
§ane37iu Naive Bayes &anu3n dane3fiu Support
Vector Machine (SVM) dUsz@ngainlunisdiuwun
Formmnniign FsiidAccuracy agiisosas 83.91 a1
Precision 0871 Y98 84.23 AN Recall 0y fowaz
83.80 WAz F-measure agjfifouaz 84.01 Faduly
T e B ALt b
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4.2 aAUTENAN1TITY

9aneo3 v Support Vector Machine (SVM) il
UsgavBamlunsnsadutenruniwilnedidunns
nduundsnalmuedinnitandsaenndasiuiuanuide
989 Noviantho, Isa Wag Ashianti [5] A 1AL
9anedy 4 Support Vector Machine (SVM) &
Usgdngamlunisdruunuinnindanaifiu Naive
Bayes Lazd1uIT8U09U09 Nurrahmi haz Nurjanah
[24] AT IR iuIrSanes i Support Vector Machine
(SVM) fiuszdnSanlunisdnuunuinningane3iy K-
Nearest Neighbour ﬁgﬂﬁlﬁmmmﬂﬁaﬂﬁﬁu Support
Vector Machine (SYM) ¥aunisidaduiivinisuds
Toyaveniduassils Feamnsaiazdnunnguues
Toyandduiuiios 2 nquldanindaneiiu k-
Nearest Neighbour ﬁi‘ﬁmﬁmz%ﬁ'}waﬁay‘a hay
Sane3fiu Naive Bayes fildannuuvzdu lnedina
nsUszliuUsEAVSATWIBISanes L Support Vector
Machine (SVM) fisnaanugndesegfisesas 83.91 9
agluinusiAnsemuauuigIuuigediodndainiy
gndesiitesegieunandunudeyaililumide
afalgafisaudivosey saudanmslddawinely
Jaguuiuiilaseadrdliuuey fanuvannvans uas
audameguvainisléniuilng Jeaenndesivanide
09 nMuauETaINg [36] Aldtouusinfeatuil 3
iAnAuRanaIatun1sdwunle

4.3 Ya31nnluauidy

431 dedsnuoaulatiuredluiounAlild AP
Famnunansanuaaiuld §egdudesddnisie
FanuuaninuAniugiefies Swihldiinay
arilumssivsiuteya

4.3.2 Mseamnwinedainnulanane sy
Fomnuandessulatiinsldmiilinswmsnaiwilve
%ﬂﬁﬂﬁlajmmsa’iLﬁm3ﬁfﬁamwmfuiﬁaemgﬂﬁaa
waziiaauAanatnluni1siause@ns nnves
danosnu

4.4 Jarduanulun15Aa8anIuie
seeganlusuIAnIaIuITatn lUNRUNR e an
Tunstesiunmsndunndenislaiuasuudslodoasau
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