Outbreak of *Phenacoccus manihoti* MAT-FERR. in Kamphaeng Phet Province

ABSTRACT

Phenacoccus manihoti has introduced severe pest of cassava and immigration of pest-borne cutting stem, caused outbreak in several areas and widely spread. Addition, a severe of damages depends on environments, weather and existent of natural enemy. To reach sustainable management should be understanding the nature of pest and factors affected. The study tracked population changes of *P. manihoti* on various factors especially agro-meteorological element. Cassava farmer fields at Khlong Khilung and Mueang districts, Kamphaeng Phet province were studied every 4 weeks during October 2009 and October 2012 based on growing pattern and existent of *A. lopezi*. The result showed that outbreaks of *P. manihoti* was not depended only on climate variability but also some element contribute to the outbreak. In case of non-parasitoids warp, consecutive days without rain causes small amounts increased more than 10 times in 28 days, a heavy rain did not eradicate but just reduced. But consecutive rain for example: in seven days it’s rain 4 days consecutive 2 weeks or 2 in 3 consecutive 4 weeks reduced amount almost completely. Rainfall reduced amount of *P. manihoti* more than other mealybug. In case of released *A. lopezi*, the amount per plant was very small and significant shown effectively control *P. manihoti*, but also change amount of other mealybugs.

Key-words: cassava, mealybug, *Phenacoccus manihoti*, outbreak of mealybug

Walaipron Sasirapa\(^1\), Thaleamgsak Weeravoot\(^2\), Amporn Winotar\(^2\), Nicha Pothong\(^3\)

\(^1\) Information Technology Centre, Department of Agriculture, Chatuchak, Bangkok 10900
\(^2\) Plant Protection Research and Development Office, Department of Agriculture, Chatuchak, Bangkok 10900
\(^3\) Farm Radiographer, Department of Agriculture, Chatuchak, Bangkok 10900
บทคัดยอย

เพลิงป่าเป็นมันส์ประจำสิ่งมุ่ยเป็นแมลงที่ต้องอยู่อย่างไร้พื้นที่
สปันใหญ่บางกว้างขวาง การเดินผ่านอีกชีวิตจากแหล่งหนึ่งไปสู่แหล่งหนึ่งอย่างไม่
ระมัดระวังเป็นการด้วยให้การระบาดแพร่
กระจายมากขึ้น อาจจะป้องกันทางสภาพภูมิอากาศ
สันนิฐาน รวมทั้งการเปลี่ยนแปลงสภาวะธรรมชาติที่มี
ประสิทธิภาพมากควบคุม การจัดการแมลงสัตว์
พืชอย่างยั่งยืน จำเป็นต้องมีความเข้าใจ
ธรรมชาติของการแพร่ระบาดของสัตว์พืชในนั้น
และปัจจัยที่มีผลกระทบต่อการเปลี่ยนแปลง
ประชากร จึงทำให้การศึกษาและติดตามการ
เปลี่ยนแปลงประชากรเพลิงป่าเป็นมันส์ประจำสัตว์
สิ่งมุ่ย กับปัจจัยต่าง ๆ รวมทั้งสภาพภูมิอากาศ
โดยรวบรวมข้อมูลจากการสอบถาม สำรวจและ
ติดตามการระบาดในแปลงป่าประจำสัตว์ของ
เกษตรกร อ.คลองชุ่มและเมือง จ.กาแพงเพชร
ทุก 4 สัปดาห์ ระหว่างเดือนตุลาคม 2552 -
ธันวาคม พ.ศ. 2555 จำแนกแปลงตามลักษณะ
การปลูกพืชประจำสัตว์ของเกษตรกร วิเคราะห์
การเปลี่ยนแปลงประชากรเพลิงป่าเป็นมันส์ประจำ
สัตว์สิ่งมุ่ย เพลิงป่าเป็นมันส์ประจำสัตว์
สิ่งมุ่ย เปลี่ยนแปลงนิยม ๆ และแมลงสัตว์
ธรรมชาติ และรู้ในปัจจัยที่ไม่มีการควบคุมโดย
Anagyrus lopezi กับสภาพภูมิอากาศ พบว่า
การระบาดของเพลิงป่าเป็นมันส์ประจำสัตว์สิ่งมุ่ยไม่
ใช้ชีวิตจากการเปลี่ยนแปลงสภาพภูมิอากาศ แต่
สภาพภูมิอากาศเป็นปัจจัยสำคัญที่ทำให้เกิดการ
ระบาด ในสภาพที่ไม่มีแมลงเป็นควบคุม ฝนที่
ไม่ตกติดต่อกันนานๆ ทำให้เพลิงป่าขึ้นอย่าง
ปริมาณน้อย ๆ เพิ่มปริมาณมากขึ้น 10 เท่า ใน
28 วัน แต่ก็ยังไม่ทำให้เพลิงป่าเป็นมันส์ประจำ
สัตว์สิ่งมุ่ยถูกกระจายออกไปทั่วหมด จะตัด
จำนวนลงได้ แต่ถ้าพื้นที่ขาดอุ่น ๆ ใน 7 วัน ฝนตก
ไม่น้อยกว่า 4 วัน ติดต่อกัน 2 สัปดาห์ หรือ
สัปดาห์ที่วันฝนต่ำสุด 3 สัปดาห์ใน 4 สัปดาห์
ติดต่อกัน สามารถลดจำนวนเพลิงป่าเป็นมันส์ประจำ
สัตว์สิ่งมุ่ยได้เกือบทั้งหมด การลดลงของฝนทำให้
ประชากรของเพลิงป่าเป็นมันส์ประจำสัตว์สิ่งมุ่ย
ลดลงได้มากกว่าแมลงป่าเป็นกิ่งดิน ไม่พบที่มี
ฝนเป็นควบคุม จำนวนฝนเป็นมันส์ประจำ
สัตว์สิ่งมุ่ยต่ำต้นลงลงมาก แต่เข้าจับเจริญว่า
ประสิทธิภาพในการควบคุมเพลิงป่าเป็นมันส์ประจำ
สัตว์สิ่งมุ่ยไม่ได้ทำให้หมดไป แต่ผลต่อการ
เปลี่ยนแปลงของเพลิงป่าเป็นกิ่งดินยังต่อไป ด้วย

คำขอ : มันส์ประจำสัตว์เพลิงป่าเป็นมันส์ประจำสัตว์
สิ่งมุ่ย Phenacoccus manihoi การแพร่
ระบาด

คำน่า

เพลิงป่าเป็นมันส์ประจำสัตว์สิ่งมุ่ย
(Phenacoccus manihoi MAT-FERR.) เป็น
แมลงสัตว์พืชที่ต้องอยู่ทางธรรมชาติได้ พบใน
อาชีพเดินทาง ไปเรียน ประชิป โล้แม่เปล่า กาย
นานา และประสาทวัย เป็นพืชที่ถูกปรากฏอยู่เป็น
ที่รู้จักโดยบ้างขึ้นเรื่องจาก
มีการแพร่กระจายจากอเมริกาใต้ไปยัง
อเมริกาเหนือในปี พ.ศ. 2516 (Herren and
Neuenschwander, 1991) ในที่สุดวิวัฒนาการ
ที่สุ่มต่อกันไม่ยั่งยืน ออก และลงไปตาม
ขอบคุณรวมศรีวิชัย ปมรัตน์ ประยงค์ และ ประทุม นิรันดร สำหรับการแก้ไขรูปแบบหนังสือสื่อสารที่มีคุณภาพสูง สำหรับการเรียนรู้ในเรื่องนี้ ทำให้การศึกษาที่มีคุณภาพสูงขึ้น การเรียนรู้ที่มีคุณภาพสูงยังคงมีบทบาทที่สำคัญในการพัฒนาการศึกษาของนักเรียน

กับ P. manihoti พบว่าที่ 35 ปี. เพื่อส่งเสริมการมีต่อระยะต่ำเติม (Schulthess et al. 1987) P. manihoti พบในต้นกล้าเล็กน้อยย้อนไปในผลสัณฐานที่ต่อไปนี้ แต่พบบนยอดและใบที่เก่าแก่มากขึ้น ที่สูง อย่างไรก็ตาม ไม่สามารถ อธิบายได้ด้วยคุณค่าทางไนยกรรมของใบในส่วนต่างๆ เพียงอย่างเดียว ผู้มีผลิตผลสัมประสิทธิ์ความเกี่ยวพันกันกับอัตราการเพิ่มขึ้นของเพลิงป่าในชนิดนี้ ความซับซ้อนจากการคาดหวังของพืช (plant drought stress) ที่แสดงผลสัมมัยกับวงจรชีวิต (life table statistics) แต่บริการที่นักพืชมีผลการเปลี่ยนแปลง ประชากรของเพลิงป่า (Parsa et al. 2012) Ezumah และ Knight (1978) ได้ให้ข้อสังเกตเกี่ยวกับสภาพแวดล้อมที่พืชเพลิงป่าจะมีความสัมพันธ์ที่แข็ง ซึ่งมีความชัดเจนด้วยมีการสุน่ำเสียงมาก อารมณ์และอินทรีย์วัตถุจากกัน การเข้าสู่ลำน้ำเพียงชั่วขณะ และตลอดอย่างรวดเร็วในการช่วย

ปัจจุบันการแพร่กระจายอย่างไม่สามารถใช้การแพร่กระจายพันธุ์ของแมลงไม้ได้ (Parsa et al. 2012) แต่การเคลื่อนย้ายและปรับเปลี่ยนเพลิงป่าโดยมุ่งมั่นมุ่งมั่นไม่มากขึ้นประมาณต้นนี้ จึงเชื่อว่าการแพร่กระจายพันธุ์พืชสัมพันธ์ในสารเคมีที่แนะนำก่อนปลูก การหลุดเลื่อน การปลูกต้นพืชในพื้นที่ ฯลฯ ทางรายการ การใช้พืชป้องกันโรค การปลูกต้นพืชมุ่งมั่นเพื่อให้มีสัมพันธ์ชั่วชีวะ และการปลูกพืชในบริเวณจะเปลี่ยนแปลงพืชในระยะยาว
กระจายเพศปกติ (สุทธิและคูละ, ไม่ระบุปี)
นอกเหนือจากนี้แล้วศูนย์อุปกรณ์อานิจิกียังเป็นนิยมที่
สำคัญในการควบคุม เพลี้ยปะซิโนนีมีรายงาน
ว่า ศูนย์อุปกรณ์อานิจิกีที่เป็นตัวผู้มี 4 ชนิด ตัวผู้
12 ชนิด และตัวผู้ 1 ชนิด (Löhr et al.,
1990) แต่ Anagyrus lopesi เป็นแนวเบื้อง
ชนิดหนึ่งที่มีแนวโน้มสูงที่สุด จากการใช้ควบคุม
การระบาดในอีสานช่วงปี พ.ศ. 2528 สามารถ
ลดการระบาดได้ 90% กล่าวเป็นกรณีที่
ประสบความสำเร็จอย่างยิ่งของการควบคุมโดย
ชีววิทย (Norrgaard, 1988) ประเทศไทยนำเข้ามา
เพื่อควบคุมในเดือนพฤศจิกายน พ.ศ. 2552 และ
ผ่านการทดลองความปลอดภัยในท้องปฏิบัติการ
และโรคทดลองจำนวน 3 แห่งว่ามีประสิทธิภาพ
ในการควบคุม P. manihoti (อินทร์, 2553; อินทร์
และคณะ, 2554) ซึ่งทำให้เกิดผลการทดลอง
และเป็นศักยภาพที่เข้ากับการทดลอง
ที่ศูนย์ทดลองอานิจิกีวิทยาการ
ประมง 2552 - ตุลาคม พ.ศ. 2555 จากแปลงที่มีการ
ระบาดของเพลี้ยปะ สำรวจนัดติดตามการ
แปลงแปลงประชากรทุก 4 สัปดาห์ ในแปลง
ปลูกมันส้าประหลังของเกษตรกร อ.คลองชุ่ม
และต.ปะทะบัน อ.เมือง จ.กำแพงเพชร โดย
จำแนกแปลงมันส้าประหลังตามลักษณะการปลูก
มันส้าประหลังของเกษตรกร บันทึกข้อมูลเกี่ยวกับ
ระยะการเจริญเติบโต พันธุ์มันส้าประหลัง อายุ
ระยะปลูก การดูแลรักษา การปล่อยแพนเนี่ยน
เพื่อควบคุม การทำลายของเพลี้ยปะ ลักษณะ
อาการ และการสำรวจแปลงในแปลงมันส้าประหลัง ด้านการ
การนำแปลงการสู่ลงการจำนวน 50
ต้น/แปลง ตรวจสอบวินัยแผนก พื้นที่ที่บังคับ
นับจำนวนเพลี้ยปะแปลงเป็นเพลี้ยปะแปลงมันส้าประหลังสิ้นสุด เลือกแปซิโนนีและแปลงศิริ
ธรรมดาได้แก่ ตัวผู้แปลงทุกต้น และ
แปลงช่างโปโกล รวมทั้งแปลงแปลงเพลี้ยปะแปลงมัน
ส้าประหลังสิ้นสุดว่า วิเคราะห์ข้อมูลเวลาแปลง
จำแนกตามกระบวนการผลิตและเรื่องไข้ที่มีไม่มี
การควบคุมโดย A. lopesi รวมทั้งปริมาณและ
การกระจายของแผน

ผลการทดลองและวิจารณ์

เกษตรกร จ.กำแพงเพชรปลูกมัน
ส้าประหลัง 2 แบบคือ การปลูกและเก็บเกียร์ใน 1 ปี
และการปลูกข้ามปี เกษตรกรส่วนใหญ่ปลูกมัน
ส้าประหลังในช่วงเดือนตุลาคมระหว่างเดือนมีนาคม-
พฤศจิกายนซึ่งอยู่ภายใต้การเริ่มต้นของฤดูฝน มีปลูก
ช่วงเดือนธันวาคมกว่า ทั้งอย่างการปลูกที่ข้ามปลาย
การเก็บเกี่ยวเริ่มต้นแต่เดือนพฤศจิกายนและ
ทยอยเก็บเกี่ยวผู้ผลิตในเดือนพฤศจิกายน เกษตรกร
มักเก็บท่อนพันธุ์ต่างกันไว้ปลูกต่อ แต่ในปี พ.ศ.

Thai Agricultural Research Journal Vol. 31 No. 3 September - December 2013 221
2552 มีผู้ที่ทำการระบบน้ำเพลิงเป็นมันส์ประหลาด
สิ่งมีชีวิตในทะเลที่รับ ทำให้เกิดการต้อง
รับเก็บผลิตภัณฑ์ เกษตรทรัพย์ปลูกที่มันส์ประหลาด
มากกว่า 1 พันรู แต่พบปลูกพันธุ์โดยพันธุ์หนึ่ง
เป็นแปลก ๆ ใน การระบายขอเพลิงเป็นและ
ช่วงเวลาที่อยู่ในช่วงดินป. พ.ศ. 2553 ทำให้
บางประเภทต้องปลูกหลายครั้ง เกษตรกรด้วยเหตุ
ท่อนพันธุ์ใหม่หลายเทน รวมทั้งการนำท่อนพันธุ์
จากต่างถิ่นเข้ามาปลูก เกษตรกรยังมีปลูก
พันธุ์ระยะ 5 มากที่สุด และพันธุ์อื่น ๆ ที่นิยม
ปลูกที่ได้แก่ วัยยาง 60 ระยะ 9 ระยะ 72
ระยะ 11 เกษตรสาร 50 และพันธุ์
CMR36-55-166 (น้องแบบ) การใช้พันธุ์
CMR36-55-166 ระยะ 11 และระยะ 9 มี
แนวโน้ม สูงขึ้น การระบายขอเพลิงเป็นทำให้
ผลิตตีป. พ.ศ. 2552/3 เหลือ 4.3 ตัน/ไร่ ลดลง
จากปีก่อนซึ่งมีผลิตตีเป็น 4.7 ตัน/ไร่ ส่วน
ผลการศึกษาคัดจำการระบายขอเพลิงเป็น
จำแนกตามระบบการผลิตเป็น 2 กลุ่ม ดังนี้

มันส์ประหลาดที่ปลูกและเก็บเกี่ยวใน 1 ปี

ศึกษาจากแปลงมันส์ประหลาดใหญ่ 7 เตียง
ที่บ้านช้างตับ ต.วิสาหาร อ.คลองดุสิตที่ต่อเนื่อง
พุทธกาญจน พ.ศ. 2552 พันธุ์ที่วั่ง 60 ไม่มี
การใช้สารเคมีนิดหนึ่ง ซึ่งการระบายขอเพลิงเป็น
มันส์ประหลาดสิ่งมีชีวิตต่างเร็ว ๆ โดยมี
การระบายขอเพิ่มขึ้นเร็ว ๆ ในช่วงเดือนมกราคม-
กุมภาพันธ์ของปีถัดไป บางส่วนรุ่นแรงมีอาการ
ตายจากยอด เก็บเกี่ยวผลิตติในเดือนянยาน
ปลูกใหม่อีกในเดือนกรกฎาคม พ.ศ. 2553 ไม่
ได้เก็บท่อนพันธุ์ เริ่มพบเพลิงเป็น
มันส์ประหลาดสิ่งมีชีวิตในสันตurity 32 แต่พบใน
ปริมาณน้อยมาก ศิริพานธุ์รัฐพันธุ์ในช่วงนี้
เป็นตัวล่า เนื่องจากพยาบาลเข้าทำลายของโรง
เพลง และไม่พบเพลิงเป็นมันส์ประหลาดสิ่งมีชีวิต
in การสำรวจพบต่อไปนี้เมื่อมีฝนตกต่อ
กันแบบพู่กันหลายสัปดาห์ติดต่อกัน แปลงนี้เริ่ม
พบเพลิงเป็นมันส์ประหลาดสิ่งมีชีวิตก่อนร้อยใน
สันตurity 44 แต่พบในปริมาณน้อยมาก และ
จำนวนยอดที่ถูกทำลายก็น้อยกว่าเมื่อเทียบกับ
พื้นที่ก่อน (Table 1) ช่วงปลายฝนเพลิงเป็น
ปีนี้ชีวิตต่อเนื่องจำนวนมาก สุดส่วนของ
เพลิงเป็นมันส์ประหลาดสิ่งมีชีวิตลดลงเมื่อเทียบกับ
ป. พ.ศ. 2552 (Figure 1) เพลิงเป็นถิ่นย้ายไป
เพลิงเป็นที่พบจำนวนมากนี้ ทำให้ช่วงต่อ
ระหว่างกันเป็นนิดหนึ่งในปีหลัง และพบเพลิงเป็น
mันส์ประหลาดสิ่งมีชีวิตเพิ่มขึ้นในช่วงสันตurity 48
ศิริพานธุ์รัฐพันธุ์ในช่วงนี้เป็นตัวล่า แต่
เป็นพื้นท้องกิ่ง และยังพบ A. lopezi 1 ตัวตัว
แม้แปลงนี้ไม่ได้มีการปลูกแทนเป็นชนิดหนึ่งมาก
ก่อน จากรายงานของวัฒนพีร (2554) ที่ผลการ
พบ A. lopezi ได้สูงจากจุดปล่อย 2 ถึง 2
เดือนหลังปล่อย ซึ่งแปลงนี้สูงจากจุดทดลอง
ปล่อยนั้น 1.7 ถึง 1.7 แกล้ม แต่ช่วงเวลาต้นแปลงกว้างระหว่าง
ปลูก จึงสามารถพบ A. lopezi ได้ในช่วงเดือน
ธันเดือนหรือ 8 เดือนหลังปล่อย สันตurity 52
เพลิงเป็นพลอยและยังพบมันส์ของ A. lopezi
สันตurity 4 ของบิดาไปเริ่มพบพลอยของจำนวน
และพันธุ์อื่นในสันตurity ที่ 8 แต่เพลิงเป็นมันส์
ประหลาดสิ่งมีชีวิตอยู่ แม้พบเพลิงเป็นใน

222

วารสารวิชาการเกษตร ปีที่ 31 ฉบับที่ 3 กันยายน – ธันวาคม 2556
Table 1. Mealybug infected cassava and farmer practice, Wangsai, Khlong Khlung district, Kamphaeng Phet province during 2009 - 2012.

<table>
<thead>
<tr>
<th>Week/year</th>
<th>Mealybug infected cassava (%)</th>
<th>No/plant</th>
<th>Natural enemy (no/50 plant)</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Plant</td>
<td>P. manihoti</td>
<td>Other meallybug</td>
</tr>
<tr>
<td>47/2009</td>
<td>14</td>
<td>18</td>
<td>6.8</td>
<td>0.0</td>
</tr>
<tr>
<td>52/2009</td>
<td>24</td>
<td>86</td>
<td>62.8</td>
<td>4.2</td>
</tr>
<tr>
<td>3/2010</td>
<td>100</td>
<td>100</td>
<td>168.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7/2010</td>
<td>64</td>
<td>89</td>
<td>167.7</td>
<td>10.1</td>
</tr>
<tr>
<td>April 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32/2010</td>
<td>0.0</td>
<td>0.0</td>
<td>0.08</td>
<td>0.0</td>
</tr>
<tr>
<td>39/2010</td>
<td>10.5</td>
<td>6.0</td>
<td>0.0</td>
<td>2.7</td>
</tr>
<tr>
<td>44/2010</td>
<td>10.5</td>
<td>12.0</td>
<td>0.02</td>
<td>19.4</td>
</tr>
<tr>
<td>48/2010</td>
<td>6.4</td>
<td>100.0</td>
<td>0.48</td>
<td>121.2</td>
</tr>
<tr>
<td>52/2010</td>
<td>42.9</td>
<td>88.0</td>
<td>0.061</td>
<td>52.5</td>
</tr>
<tr>
<td>4/2011</td>
<td>19.4</td>
<td>84.0</td>
<td>2.8</td>
<td>5.8</td>
</tr>
<tr>
<td>8/2011</td>
<td>16.4</td>
<td>100.0</td>
<td>6.2</td>
<td>23.6</td>
</tr>
<tr>
<td>March 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21/2011</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25/2011</td>
<td>0.0</td>
<td>2.0</td>
<td>0.02</td>
<td>0.0</td>
</tr>
<tr>
<td>29/2011</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>33/2011</td>
<td>1.0</td>
<td>12.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>37/2011</td>
<td>5.1</td>
<td>22.0</td>
<td>0.12</td>
<td>2.3</td>
</tr>
<tr>
<td>45/2011</td>
<td>0.0</td>
<td>70.0</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td>49/2011</td>
<td>7.8</td>
<td>96.0</td>
<td>0.08</td>
<td>15.3</td>
</tr>
<tr>
<td>1/2012</td>
<td>0.0</td>
<td>86.0</td>
<td>0.18</td>
<td>5.5</td>
</tr>
<tr>
<td>5/2012</td>
<td>22.1</td>
<td>100.0</td>
<td>1.28</td>
<td>42.0</td>
</tr>
<tr>
<td>9/2012</td>
<td>31.5</td>
<td>96.0</td>
<td>0.52</td>
<td>63.8</td>
</tr>
<tr>
<td>April 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/2012</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>29/2012</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33/2012</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>37/2012</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 1. Mealybug, natural enemy found in cassava, rainfall distribution and crop calendar, Wangsai, Khlong Khlung district, Kamphaeng Phet province during 2009-2012.

ผลการสังเกตุการณ์ พื้นที่ 19 วัน ปริมาณ 237 มม. กลับมาพบอีกร่องในสัปดาห์ที่ 37 และ 49 แต่ปริมาณน้อยมาก โดยก่อนหน้านี้ฝนตกติดต่อกัน 8 วัน แสดงว่าการเดินทางสัตว์ไม่สามารถลดปริมาณเพลิงเป็นมันสุขประหล่ำสิ่งมหูได้ดังทั่วทั้งฝั่ง แต่เมื่ออยู่ในปริมาณน้อย ๆ โดยอาศัยอยู่ตามยอดของใบใบจวบกันแน่นซึ่งจะป้องกันการระบาดจากเมื่อนี้ฝนได้ เมื่อมีฝนฝน และมีร่องร่องที่ยาวกว่าการพิจารณาที่ขึ้นเสื้อผ้าเป็นมันสุขประหล่ำสิ่งมหูมากขึ้น พบมันสุขประ

มันสุขประหล่ำสิ่งมหูมีที่ 5 ของเบลีซไป (กลุ่มพันธุ์) และมีการผลิต A. lopzsi 15 500 คู่ สามารถส่งควมันสุขประหล่ำสิ่งมหูไปใน การสำรวจรอบดีไป เก็บเกี่ยวเดือนมิถุนายน

ผลการสังเกตุการณ์เมื่อครั้งแรกปรากฏถูกภูมิใจต่าง และมีการผลิต P. manihoti ที่ 5 โดยอีกไม่พบเพลิงเป็นมันสุขประหล่ำสิ่งมหู พบครั้งแรกมีการพบว่ามันสุขประหล่ำสิ่งมหู เก็บเกี่ยวเดือน

วารสารวิเคราะห์เขต ปีที่ 31 ฉบับที่ 3 กันยายน - ธันวาคม 2556

224
Table 2. Mealybug infected cassava and farmer practice, Khlongsomboon, Khlong Khlung district, Kamphaeng Phet province during 2009 - 2012.

<table>
<thead>
<tr>
<th>Week/year</th>
<th>Mealybug infected cassava (%)</th>
<th>No/plant</th>
<th>Natural enemy (no./50 plant)</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Plant</td>
<td>P. manihoti</td>
<td>Other mealybug</td>
</tr>
<tr>
<td>52/2009</td>
<td>10</td>
<td>98</td>
<td>21.0</td>
<td>22.9</td>
</tr>
<tr>
<td>3/2010</td>
<td>76</td>
<td>82</td>
<td>24.8</td>
<td>7.2</td>
</tr>
<tr>
<td>16/2010</td>
<td>53</td>
<td>36</td>
<td>25.7</td>
<td>0.4</td>
</tr>
<tr>
<td>21/2010</td>
<td>54</td>
<td>38</td>
<td>3.8</td>
<td>0.3</td>
</tr>
<tr>
<td>25/2010</td>
<td>35</td>
<td>30</td>
<td>2.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The data show that mealybug infestation in cassava was highest in the 52nd week of 2009 with 98% of plants infected. The highest number of P. manihoti was recorded in the 16th week of 2010, with 25.7 mealybugs per plant. The number of other mealybugs was highest in the 21st week of 2010, with 3.8 mealybugs per plant. The highest number of natural enemies was recorded in the 25th week of 2010, with 82 mealybugs per plant. The practice of cutting stalks and spraying was most common, with 42 plants treated in the 16th week of 2010. The practice of cutting stalks was conducted in the 21st week of 2010.

Conclusions:

The highest mealybug infestation in cassava was observed in the 52nd week of 2009. The highest number of P. manihoti was recorded in the 16th week of 2010, while the highest number of other mealybugs was observed in the 21st week of 2010. The highest number of natural enemies was observed in the 25th week of 2010. The practice of cutting stalks and spraying was most common, with 42 plants treated in the 16th week of 2010. The practice of cutting stalks was conducted in the 21st week of 2010.
Table 3. Mealybug infected cassava and farmer practice, Mueang district, Kamphaeng Phet province during 2009 - 2012.

<table>
<thead>
<tr>
<th>Week/year</th>
<th>Mealybug infected cassava (%)</th>
<th>No/plant</th>
<th>Natural enemy (no/50 pt)</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Plant</td>
<td>P. manihoti</td>
<td>Other mealybug</td>
</tr>
<tr>
<td>March 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/2010</td>
<td>72.2</td>
<td>94</td>
<td>22.5</td>
<td>23.0</td>
</tr>
<tr>
<td>19/2010</td>
<td>48.6</td>
<td>50</td>
<td>6.8</td>
<td>7.1</td>
</tr>
<tr>
<td>24/2010</td>
<td>39.7</td>
<td>74</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>28/2010</td>
<td>0.0</td>
<td>8</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>32/2010</td>
<td>2.5</td>
<td>0</td>
<td>0.0</td>
<td>29.5</td>
</tr>
<tr>
<td>38/2010</td>
<td>14.2</td>
<td>0</td>
<td>0.0</td>
<td>69.2</td>
</tr>
<tr>
<td>44/2010</td>
<td>6.2</td>
<td>100</td>
<td>0.0</td>
<td>59.4</td>
</tr>
<tr>
<td>48/2010</td>
<td>1.6</td>
<td>0</td>
<td>0.2</td>
<td>824.1</td>
</tr>
<tr>
<td>52/2010</td>
<td>0.6</td>
<td>100</td>
<td>0.0</td>
<td>91.1</td>
</tr>
</tbody>
</table>

ยากไม่เกิน 0.16 ตัว/หนักในทุกแปลงที่สำรวจ การปลูกข้าวบีมสินส้าปลักต้องข้าวแล้วยังเป็นเวลา นาน และสภาพแวดล้อมเช่นนี้ฉันให้ประชากรเพิ่ม มาหนัก ว่าสิ่งแวดล้อมก็มีโอกาสป้องกันตนเอง โดยการกินป่า และถ่ายทอดisonerกันต้นยา เพื่อทำ เป็นท่อนับหนึ่ง วิธีการเหล่านี้ช่วยลดจำนวน ประชากรเพิ่มเติมหลุดได้มาก แต่ถ้าแปลงใหญ่มี การควบคุมหรือจัดการใด ๆ แปลงเหล่านี้จะเป็น แหล่งสะสมของเพิ่มเติมทำให้การระบาดได้ รวดเร็วขึ้นในฤดูแล้ง แต่ด้วยจากแปลงที่ปลูก และเก็บเกี่ยวในปีเดียวก่อนแล้วจะเก็บเกี่ยว ปล่อยให้แปลงระหว่างพืชปลูกในฤดูต่อไป จึง เป็นการลดประชากรเพิ่มเติมอย่างได้ผล.

ความสัมพันธ์ระหว่างการแพร่ระบาดกับสภาพภูมิอากาศ

ตามรายงานปัญหาการระบาดของเพิ่ม แปลงในช่วงต้นปี พ.ศ. 2551 ที่ อ.คลองขนุน หมอ ตรวจสอบข้อมูลย้อนหลังพบว่า ปี พ.ศ. 2550 มีปริมาณฝน 1,426 มม. ซึ่งน้านไม่ได้มาก แต่พบว่ากิ่งก้านผ_ghostki 1,298 มม. จำนวนวันฝนตก 118 วัน แต่ ช่วงปลายฝนประมาณสัปดาห์ที่ 45-49 ปริมาณ น้ำฝนน้อยเมื่อเทียบกับค่าเฉลี่ย (Table 4) จากการสอบถามเกษตรกรเกี่ยวกับการระบาดของ เพิ่มเติมและความรุนแรงที่พบในปี พ.ศ. 2551 จ.ก.เกษมพรพาน推出ระบาดของเพิ่มเติมอยู่ใน ช่วงฤดูแล้ง มีความรุนแรงอยู่ในระดับสูง ปี พ.ศ. 2552 พบการระบาดของเพิ่มเติมระหว่างเดือน เมษายน-มิถุนายน โดยมีความรุนแรงอยู่ในระดับ สูงเช่นกัน จากการตรวจสอบข้อมูลภูมิอากาศพยา ฒน์เป็นปีที่มีฝนตกต่ำกว่าค่าปกติ ปริมาณฝน รวม 1,169 มม.และช่วงปลายฝนมีฝนตกน้อยหรือ หมดส่วนร้อย ฤดูฝนมีสูงสุดเฉลี่ย 29-36°. ช. ฤดูฤดูมีสูงสุดเฉลี่ย 16-25°. ป.ว.ศ. 2553
Table 4. Rainfall variability in some standard meteorological week during 2007-2012 and normal rainfall, Kamphaeng Phet province

<table>
<thead>
<tr>
<th>Year</th>
<th>Rainfall during standard week (mm)</th>
<th>Annual rainfall (mm)</th>
<th>Annual rainyday (day)</th>
<th>Maximum temperature >35°C (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-14</td>
<td>15-19</td>
<td>40-44</td>
<td>45-49</td>
</tr>
<tr>
<td>Normal</td>
<td>46</td>
<td>118</td>
<td>204</td>
<td>32</td>
</tr>
<tr>
<td>2007</td>
<td>12</td>
<td>303</td>
<td>262</td>
<td>1</td>
</tr>
<tr>
<td>2008</td>
<td>35</td>
<td>243</td>
<td>392</td>
<td>33</td>
</tr>
<tr>
<td>2009</td>
<td>74</td>
<td>79</td>
<td>157</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>25</td>
<td>99</td>
<td>328</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>119</td>
<td>117</td>
<td>224</td>
<td>27</td>
</tr>
<tr>
<td>2012</td>
<td>65</td>
<td>36</td>
<td>98</td>
<td>24</td>
</tr>
</tbody>
</table>

อุณหภูมิสูงสุดเฉลี่ย 30-38° C. อุณหภูมิสูงสุดเฉลี่ย 20-26° C. ปริมาณน้ำฝนรวม 1,594 มม. สูงกว่าปกติ แต่ดูดผ่านมากจะทำให้ช่วงต้นปีประสบกับสภาพแห้งแล้งยาวนาน แต่ช่วงปลายฝนก็ลดลงและยาวนานโดยฝนตกในเดือน ธันวาคม ทำให้ประชาชนเฉลี่ยปีมีฝนต่ำสุด ซึ่งมีฝนตกน้อยมากถึงไม่มีปี ป.ศ. 2554 ปริมาณน้ำฝนรวม 1,637 มม. ฝนตกเครื่องและปริมาณมาก อุณหภูมิสูงสุดเฉลี่ย 30-34° C. อุณหภูมิสูงสุดเฉลี่ย 18-25° C. พบการขาดซ้ำของเฉลี่ยปีมีฝนต่ำสุดเฉลี่ยในช่วงปี พ.ศ. 2554 ในช่วงที่คินบนนอุณหภูมิต่ำสุดจุดขั้น ขั้นที่น้อยที่สุดเฉลี่ยจึงพบเฉลี่ยปีมีฝนมากขึน อุณหภูมิที่เพิ่มสูงขึ้นมีผลให้เฉลี่ยปีมีจุนตุบโตเป็นตัวเล็กๆได้รับขึ้น อุณหภูมิที่สูงกว่า 35° C. ที่อาจทำให้เฉลี่ยปี P. manihot ไม่สามารถเจริญเป็นตัวเล็กๆได้เฉพาะในช่วงกุมภาพันธ์-มีนาคม พบว่ามีจำนวนการที่อุณหภูมิสูงกว่า 35° C. สูงมากในปี พ.ศ. 2553 และยาวนานถึงเดือน มิถุนายน

ในช่วงฤดูฝนเมื่อลองเหตุการณ์ที่ผ่านมา และการปรากฏของเฉลี่ยปีมีฝนต่ำสุดเฉลี่ย ซึ่งพบรายละเอียดมากกว่าช่วงกุมภาพันธ์-มีนาคม พืชความดกคัดสูงช่วงการตกฝนกับการระดับที่พื้นใน 4 สำต้าค่าข้างหน้า โดยฝนที่ตกป่วยทุก 7 วัน ฝนตกไม่น้อยกว่า 4 วันติดต่อกัน 2 สำต้าค่า หรือสัปดาห์ในสัปดาห์ 3 สำต้าค่า ติดต่อกันใน 4 สำต้าค่า (Table 5) สามารถลดจำนวนเฉลี่ยปีมีฝนต่ำสุดเฉลี่ยในช่วงกุมภาพันธ์-มีนาคมได้เกือบทั้งหมด แต่เฉลี่ยปีขั้นน้อยยังคงปรากฏอยู่

การปล่อย A. lopesi ในต้นปี พ.ศ. 2553 สามารถควบคุมเฉลี่ยปีมีฝนต่ำสุดเฉลี่ย ซึ่งมีผลทำให้ฝนตกมากขึ้นช่วงกุมภาพันธ์-มีนาคม แปลง แม้จะเป็นปีที่มีฝนตกมากและฝนตกซึ่ง สามารถพบเห็นเลยในเดือนยานามารคเป็นต้นมา เนื่องจากช่วงเวลาเดือนฝนปีมีฝนต่ำสุดเฉลี่ย หลังกุมภาพันธ์จึงมีจำนวนน้อยชั่ว และพบการดูดใน
Table 5. Rainy day in earlier week before survey in case of not found *P. manihoti* and no of other mealybug and natural enemy (no/plant) in Kamphaeng Phet province

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>P. manihoti</th>
<th>Other mealybug</th>
<th>Natural enemy</th>
<th>Rainyday (day) weekly earlier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 weeks before</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wangsai</td>
<td>24/9/2010</td>
<td>0.06</td>
<td>0</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td>Wangsai</td>
<td>20/7/2011</td>
<td>0.053</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Wangsai</td>
<td>16/8/2011</td>
<td>0</td>
<td>0</td>
<td>2.24</td>
<td>0</td>
</tr>
<tr>
<td>Angsai</td>
<td>17/8/2012</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wangsai</td>
<td>12/9/2012</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>9</td>
</tr>
<tr>
<td>Klongsomboon</td>
<td>21/6/2011</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Klongsomboon</td>
<td>20/7/2011</td>
<td>0</td>
<td>0</td>
<td>0.32</td>
<td>2</td>
</tr>
<tr>
<td>Klongsomboon</td>
<td>22/6/2012</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Klongsomboon</td>
<td>11/7/2012</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Klongsomboon</td>
<td>27/7/2012</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
<td>4</td>
</tr>
<tr>
<td>Klongsomboon</td>
<td>12/9/2012</td>
<td>0.06</td>
<td>0</td>
<td>0.44</td>
<td>1</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>10/8/2010</td>
<td>0.5</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>20/6/2011</td>
<td>5.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>19/7/2011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>21/6/2012</td>
<td>0</td>
<td>0</td>
<td>1.88</td>
<td>38</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>10/7/2012</td>
<td>0</td>
<td>0</td>
<td>6.7</td>
<td>17</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>26/7/2012</td>
<td>0</td>
<td>0</td>
<td>31.9</td>
<td>41</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>16/9/2012</td>
<td>0.02</td>
<td>0</td>
<td>5.36</td>
<td>16</td>
</tr>
<tr>
<td>Mueang 1</td>
<td>11/9/2012</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td>0</td>
</tr>
<tr>
<td>Mueang 2</td>
<td>10/8/2010</td>
<td>0.1</td>
<td>0</td>
<td>29.5</td>
<td>0</td>
</tr>
<tr>
<td>Mueang 2</td>
<td>22/9/2010</td>
<td>0</td>
<td>0</td>
<td>69.2</td>
<td>0</td>
</tr>
</tbody>
</table>

In villages where *A. lopex* is not found 28. In villages where *A. manihoti* is not found 28

1. In village, the number of trees per mealybug is increased
2. In village, the number of trees per mealybug is decreased
ผันไม่แตกติดกัน 49 วัน ทำให้เสี่ยงเป็น 0.08 ตัว/ต้น และผันไม่แตกติดกัน 27 วัน เพื่อเป็นจำนวนมากขึ้น 0.12 ตัว/ต้น

3. สัดส่วนนก 110 มม.ใน 24 ชม. ไม่ทำให้เสี่ยงเป็นถูกต้องอย่างถูกต้องให้ทั่วหมด ผัน
แตกติดกัน 8 วัน รวม 218 มม. ก็ยังไม่เพียงพอในการทำให้เสี่ยงเป็นถูกต้องอย่างไร
เนื่องจากกลั่นแกรงการทำลายของเสี่ยงเป็นสิ่งมันส้า
ประหลังสีชมพุจะทำให้ออดดิบแน่น เพื่อเนื่อง
หลายอาศัยอยู่ได้ ไม่สามารถทำให้เสี่ยงเป็นสิ่งมันส้า
ประหลังสีชมพุที่ออดดิบแน่นหลุดไปทั้งหมด แต่
หากได้รับน้ำผันติดกันหรืออย่างน้อยช่วง 3 วัน
ถึง 2 วัน เป็นเวลา 26 วัน บริการแผ่นกระดาษ 256
มม. สามารถทำให้ออดบริเวณเองไม่พบ

4. บริการแผ่น 4.5 6.5 8 หรือ 15 มม.
สามารถลดจำนวนเสี่ยงเป็นตัวเพิ่มได้วัดได้ แต่จะ
มากน้อยขึ้นอยู่กับบริเวณและการกระจายของ
ผัน

5. ในช่วงฤดูฝน ฝนตกต่อเนื่อง ๆ ทุก 7 วัน
ผันไม่คงอยู่กว่า 4 วัน ติดต่อกัน 2 สัปดาห์
หรือสัปดาห์ที่แล้วสัปดาห์ 3 สัปดาห์ติดต่อกัน หรือ
ในทุกๆ 5 วัน ผันคงอยู่กว่า 3 วันติดต่อกัน 11 วัน
บริการแผ่นกระดาษ 162 มม. สามารถลดจำนวน
เสี่ยงเป็นสิ่งมันส้าประหลังสีชมพุได้เกือบทั้งหมด

6. ลักษณะที่ไม่มีเมล็ดศัตรูธรรมชาติ
มาตรฐานการทดลองที่น้อยและตั้งช่วง
อาหารทำให้การระบาดห่วย ขาดความรุนแรง
ไม่แตกติดกันนานกว่า 9 สัปดาห์ ในปลายปี
พ.ศ. 2552 – ต้นปี พ.ศ. 2553

สิ่งที่ต้องการเข้ามากระบาดในประเทศไทย (สุทธิ
และคณะ, 2554; Parsa et al., 2012) ไม่ได้ขึ้น
จากการเปลี่ยนแปลงสภาพภูมิอากาศ แต่สภาพ
อากาศเป็นปัจจัยสำคัญในการระบาดของผันทำให้
ประชาชนของเสี่ยงเป็นสิ่งมันส้าประหลังสีชมพุ
ลดได้มากกว่าเสี่ยงเป็นชนิดอื่น สาเหตุสำคัญมา
จากค่าแทนการเข้าทำลาย ที่อบอุ่นทำลายที่
ยอดตอน ยอดโฉมแตกพุ่มเป็นกระถุกกลับทำให้
กระหล้าปล้องไทยพุ่มเป็นสิ่งมันส้าประหลัง เมื่อฝนตื่น
ตกลงมากระทบแรกได้โดยตรงหรือเกิดการระลอก
ได้ง่าย ลดจำนวนประชากร หรือมีผลต่อการ
เปลี่ยนแปลงประชากรของเสี่ยงเป็นสิ่งมันส้าหลัง
กับ Parsa และคณะ (2012) ต่างจากเสี่ยงเป็น
ชนิดอื่นที่อาศัยอยู่ได้บาง ๆ ตามล่าดิน และ
เพิ่มจำนวนมากในช่วงปลายฝน เชนเดียวกับปัจจัย
ล่างเกิดของ Ezumah และ Knight (1978)
ถูกทำให้สูงขึ้นเมื่อผลผลิตทางเดินกินได้
เริ่มขึ้น การปลูกมันส้าหลังตลอดปี และปลูก
ข้าวเล็กโดยไม่มีการจัดการใด ๆ ช่วยให้การแพร
ระบาดห่วย แปลงที่ผ่านช่วงแล้วในปี พ.ศ.
2551-52 ซึ่งแผ่นสั่นและบริเวณมันส้าหลัดลงใน
หลายพื้นที่ จึงเป็นแหล่งแพรกระจายเสี่ยงเป็น
จากผันทำลายในมันส้าหลังที่อาศัยอยู่ผลผลิต
เสียหายมาก รวมทั้งการเคลื่อนย้ายท่อนพันธุ์ที่มี
เสี่ยงเป็นสิ่งมันส้าประหลังสีชมพุได้เฉพาะใน
ปี พ.ศ. 2553 ที่เกษตรกรมีการปลูกหลายครั้ง
เนื่องจากแผ่นสำหรับ ช่วยกระจายการระบาดได้
ห่วยแรงและเป็นแนวกว้างขึ้น อย่างไรก็ตาม
เกษตรกรมีการให้ความสำคัญกับการแช่ก่อนพันธุ์
สาระการเรียนรู้ที่เน้นก่อนปัจจุบัน ซึ่งสามารถควบคุมการกระทำได้ในช่วง 1 เดือนแรก ซึ่งลักษณะแสดงผลต่อพื้นที่ 2554 ได้รายงานว่าในปี พ.ศ. 2553 มีการแช่ท่อนพืชก่อนปลูกในภาคเหนือตอนล่าง 62.5% แต่ในปี พ.ศ. 2554 ทุกพื้นที่ให้ความสำคัญกับการใช้товันพืชข้าวการผลิตข้าวเพิ่มมากขึ้น เช่น ภาคตะวันออก มีการรดน้ําพืชก่อนพื้นที่เป็น 78.1% การระบาด ของพืชเพิ่มขึ้นและโรคหรือแมลงยุงกับปัจจัยหลายอย่างประกอบกัน จากการศึกษาดั้งนี้ไม่สามารถสรุปได้ชัดเจนว่าปัจจัยใดสำคัญที่สุด แต่ปัจจัยเหล่านี้มีส่วนสนับสนุนกังวลดอนข้อของ พืชเพิ่ง จำนวนและชนิดของแมลงสัตว์ รวมทั้งระยะจากพื้นที่ระบาดอยู่ก่อน สามารถฝักกันโดยเฉพาะปริมาณและการ การกระจายของพืช วิธีการป้องกันกำจัด ความ สมบูรณ์ของสัตว์และแมลงสัตว์และจุดลักษณะต่างๆ สามารถผลิตจานวนพืชเพิ่มขึ้นสั่นผลลัพธ์สั่นผลลัพธ์ได้มากกว่าพืชปัจจัยอื่น ในสภาพที่ไม่มีแมลงสัตว์ รวมทั้งอากาศควบคุม การกระทำเพื่อนบ้านและจำเพาะแมลงและไม่มีการ จัดการใดๆ ทำให้การเพาะระบบการป้องกัน แปลงเป็น A. Iopezi มีประสิทธิภาพในการควบคุม เพชรคันพืชผลสั่นผลลัพธ์สั่นผลลัพธ์ แต่ไม่ได้ทำให้ผสม ไป A. Iopezi สามารถอยู่รอดได้แม้พืชข้าวพื้น ชุมชนและราชานา เพชรคันพืชผลสั่นผลลัพธ์สั่นผลลัพธ์มี จานวนต้นดอนลดลงจากสภาพที่ไม่มี A. Iopezi ควบคุม และมีพืชเหลาขึ้นในพืชที่ไม่เสมือนรูป แต่ มีผลต่อการเปลี่ยนแปลงประชากรของพืชเพิ่ง ชนิดอื่น ๆ ดังนี้

เอกสารอ้างอิง

นิยมน. 2555. สถิติการเกษตรของประเทศไทย ปี 2554. สำนักงานเศรษฐกิจการเกษตร ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย กรุงเทพฯ. 176 หน้า.

วิสัยทัศน์ ศรีสมบัติ. 2554. การเพาะระบบการป้องกันของavascript เป็นพืชผลสั่นผลลัพธ์ใน ระบบที่มี. กลส. 84(4): 67-70.

วิสัยทัศน์ ศรีสมบัติ และเกิดศักดิ์ วรรุณี. 2554. รายงานนโยบายสู่เกษตรบูรณาการเพื่อผลสัมฤทธิ์การปลูกพืชผลสั่นผลลัพธ์โดยการกระจายพันธุ์และท่อนพืชข้าวการเกษตร. กรุงเทพฯ. 233 หน้า.
สุเทพ สาหะยา พวงกา อ่างเปี่ยม ซีมซัม บัวภัค และชิตต้า อุนทรุธิ. 2554. เหลืดแป้งผักสกัดและผลผลิต วิจัยที่เสนอเข้าร่วมพิจารณาเป็นผลทางวิจัยติดตั้ง ประจำปี 2553. กรมวิชาการเกษตร.

สุเทพ สาหะยา อิมพาร์ วิโรดี ชะรวร สะดวก ประภาพจิต จิรภูริ มะยันต์ และชิตต้า อุนทรุธิ. 2555. ผักสกัดและผลผลิต วิจัยที่เสนอเข้าร่วมพิจารณาเป็นผลทางวิจัยติดตั้ง ประจำปี 2553. กรมวิชาการเกษตร.

Löhr, B. A.M. Varela and B. Santos. 1990. Exploration for natural enemies of the cassava mealybug, Phenacoccus

