

นิพนธ์ต้นฉบับ

การเปรียบเทียบการประมาณค่าการสูญเสียดินโดยแบบจำลอง USLE, MMF และ RMMF บริเวณพื้นที่อุ่มน้ำชุน อำเภอหล่มสัก จังหวัดเพชรบูรณ์

Comparison of Soil Loss Estimation based on USLE, MMF and RMMF Models in
Nam Chun Watershed, Lom Sak District, Phetchabun Province

พิสิฐช์ กิมยอง¹Pisit Kimyong¹สามัคคี บุญยะวัฒน์²Samakkee Boonyawat²สมนิมิตร พุกงาม²Somnimirt Pukngam²¹สำนักวิจัยและพัฒนาการจัดการที่ดิน กรมพัฒนาที่ดิน

Office of Research and Development for Land Management, Land Development Department

E-mail: pisitkomyong@yahoo.com

²คณะวิชาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ จตุจักร กรุงเทพฯ 10900

Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand

รับต้นฉบับ 9 ตุลาคม 2555

รับลงพิมพ์ 23 พฤศจิกายน 2555

ABSTRACT

Soil loss estimation was conducted in the Nam Chun watershed, Lom Sak district, Phetchabun province. The experimental plots on the soil loss were constructed on different land uses consisting of 1 plot of up-and-down plowing, 2 plots of sweet corn, 2 plots of sweet tamarind and 3 plots of mixed forest plantation. The observed sediment was examined in the area for 6 months from 1 May to 31 October, 2006. The results showed that the observed sediment from the plots of up-and-down plowing, sweet corn, sweet tamarind and mixed forest plantation were 9.04, 2.09, 3.41 and 0.40 t/rai/6 months respectively. Estimation comparison among the USLE, MMF and RMMF models was analyzed using the C-factor from different sources such as LDD (2002), the $EI_{30\max}$ and the ratio method. USLE, the most correct estimation of sediment for the mixed forest plantation plot when using C-factor from LDD (2002), estimated the sediment as 0.81 t/rai/6 months ($SSE = 0.04$). For MMF, the most correct estimation of sediment for the mixed forest plantation plot when using the C-factor from the $EI_{30\max}$ method and the ratio method estimated sediment as 0.21 t/rai/6 months ($SSE = 0.04$). For RMMF, the most correct estimation of sediment for the mixed forest plantation plot when using the C-factor from the $EI_{30\max}$ method and the ratio method estimated sediment as 0.21 t/rai/6 months ($SSE = 0.04$). However, the MMF and RMMF methods needed more complicated parameters and more steps in the calculation than

those of USLE. The estimated sediment regarding MMF and RMMF showed that sediment was not found on the 75th day and 90th day in the sweet tamarind plot and there was no sediment on the 60th day, 75th day, 105th day and 120th day in the mixed forest plantation plot, whereas, observed sediment was still found on every observation. Therefore, it can be concluded that the USLE method is the most appropriate for soil loss estimation in this study area.

Keywords: Soil loss Estimation, Observed Sediment, USLE MMF and RMMF model, Nam Chun Watershed

บทคัดย่อ

การประมาณค่าการสูญเสียดินในครั้งนี้ดำเนินการในพื้นที่ลุ่มน้ำชุน อำเภอหล่มสัก จังหวัดเพชรบูรณ์ โดยสร้างแปลงทดลองการสูญเสียดินบนการใช้ประโยชน์ที่ดินที่แตกต่างกัน ประกอบด้วย การไถพรุนขึ้นลง 1 แปลง ปลูกข้าวโพดหวาน 2 แปลง ปลูกมะขามหวาน 2 แปลง และป่าปลูกผสม 3 แปลง ทำการตรวจดูตระกอนดินจริงในพื้นที่ระหว่างวันที่ 1 พฤษภาคม - 31 ตุลาคม พ.ศ. 2549 รวม 6 เดือน ปริมาณตระกอนดินที่ได้จากการตรวจวัดจากแปลงไถพรุนขึ้นลง ปลูกข้าวโพดหวาน ปลูกมะขามหวาน และป่าปลูกผสม เท่ากับ 9.04, 2.09, 3.41 และ 0.40 ตันต่อไร่ ต่อ 6 เดือน ตามลำดับ เมื่อนำมาเปรียบเทียบกับผลการประมาณค่าจากแบบจำลอง USLE, MMF และ RMMF โดยใช้ C-factor ได้แก่ C-factor ของกรมพัฒนาที่ดิน (2545) จากวิธี $EI_{30\max}$ และจากวิธีหาอัตราส่วน พนว่า แบบจำลอง USLE ให้ผลการประมาณถูกต้องมากที่สุดในแปลงป่าปลูกผสม เมื่อใช้ C-factor จากวิธี $EI_{30\max}$ มีค่าประมาณการสูญเสียดินเท่ากับ 0.81 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.04 สำหรับแบบจำลอง MMF ให้ผลการประมาณถูกต้องมากที่สุดในแปลงป่าปลูกผสม เมื่อใช้ C-factor จากวิธี $EI_{30\max}$ และวิธีหาอัตราส่วน มีค่าประมาณการสูญเสียดินเท่ากัน คือ 0.21 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากัน คือ 0.04 สำหรับแบบจำลอง RMMF ให้ผลการประมาณถูกต้องมากที่สุดในแปลงป่าปลูกผสม เมื่อใช้ C-factor จากวิธี $EI_{30\max}$ และวิธีหาอัตราส่วน มีค่าประมาณการสูญเสียดินเท่ากัน คือ 0.21 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากัน คือ 0.04 นอกจากนี้แบบจำลอง MMF และ RMMF ต้องการพารามิเตอร์นำเข้าสมการและขั้นตอนในการคำนวณลับซับซ้อนกว่าแบบจำลอง USLE เมื่อพิจารณาเปรียบเทียบผลการประมาณกับลำดับวันที่ตรวจดูตระกอนดิน พนว่า แบบจำลอง MMF และ RMMF ไม่เกิดตระกอนดินชั่งตรงกับวันที่ 75 และ 90 ในแปลงปลูกมะขามหวาน และไม่เกิดตระกอนดินชั่งตรงกับวันที่ 60, 75, 105 และ 120 ในแปลงป่าปลูกผสม ขณะที่พบปริมาณตระกอนดินที่ได้จากการตรวจวัดทุกครั้ง ดังนั้นจึงสรุปได้ว่าแบบจำลอง USLE ยังเหมาะสมที่สุดที่เป็นตัวแทนสมการในการประมาณค่าการสูญเสียดินในพื้นที่ศึกษานี้

คำสำคัญ: การประมาณค่าการสูญเสียดิน ปริมาณตระกอนดินที่ได้จากการตรวจวัด แบบจำลอง USLE, MMF และ RMMF ลุ่มน้ำชุน

คำนำ

การสูญเสียดินเกิดขึ้นเมื่อมีกิจกรรมที่เกี่ยวข้องกับการปิดหน้าดิน อาทิ การตัดไม้เพื่อทำการเกษตร ซึ่งเป็นปัจจัยที่ทำให้ความรุนแรงขึ้นเมื่อพื้นที่ทำการเกษตรนั้นมีความลาดชันมาก

ลุ่มน้ำชุนดังอยู่ที่ตำบลน้ำชุน อำเภอหล่มสัก จังหวัดเพชรบูรณ์ เป็นพื้นที่มีการประกอบอาชีพเกษตร อุปมุก จำเป็นต้องมีการเปิดหน้าดิน และทำการเพาะปลูก พืชชนพื้นที่มีความลาดชัน จึงไม่สามารถหลีกเลี่ยงการ เกิดการสูญเสียดิน ได้ การแก้ไขปัญหาดังกล่าว สามารถ ดำเนินการ โดยการวางแผนการใช้ดิน ตลอดจนกำหนด มาตรการ และวิธีการควบคุมมิให้มีการขยายพื้นที่ที่ทำกิน รุกร้าวเข้าไปในพื้นที่ป่าดันน้ำลำธาร โดยประกาศเขต พื้นที่อนรักษ์ประเพกษาฯ

ดำเนินการด้านการดัดแปลงดินและน้ำ รวมไปถึงด้านวิชาการด้านสิ่งแวดล้อม จำเป็นต้องใช้เครื่องมือทางวิทยาศาสตร์มาช่วยแก้ไขปัญหาการสูญเสียดิน ซึ่งเครื่องมือที่ได้รับความนิยมอย่างหนึ่งคือแบบจำลอง (model) โดยสามารถจำลองสถานการณ์ได้ว่าเกิดผลกระทบมากน้อยเพียงใด ตลอดจนนำผลที่ได้จากแบบจำลองไปกำหนดมาตรการวิธีการป้องกันการเกิดการสูญเสียดินต่อไปในประเทศไทย กรณีพัฒนาที่ดิน ได้นำเสนอการการสูญเสียดินหลากหลายมาใช้ประมาณค่าการสูญเสียดิน แต่ผลลัพธ์ที่ได้ยังมีความคลาดเคลื่อน ต้องปรับปรุงรูปแบบของแบบจำลองให้รองรับกับลักษณะภูมิประเทศ นอกจากนี้ยังมีการนำแบบจำลองอื่นเข้ามาประมาณค่าการสูญเสียดิน แต่ก็มีอยู่ไม่นานนัก ดังนั้นการศึกษาวิจัยครั้งนี้จึงได้นำแบบจำลองอันได้แก่ USLE, MMF และ RMMF มาประมาณค่าการสูญเสียดิน โดยเลือกพื้นที่ลุ่มน้ำชุมชน ซึ่งเป็นพื้นที่ที่มีความเสี่ยงสูงในการเกิดการสูญเสียดิน เป็นพื้นที่ศึกษา แล้วนำผลลัพธ์ที่ได้มาปรับปรุงเพิ่มกับปริมาณตะกอนดินที่ได้จากการตรวจวัด เพื่อเลือกแบบจำลองที่ให้ผลลัพธ์ใกล้เคียงกับปริมาณตะกอนดินที่ได้จากการตรวจวัดมากที่สุด สามารถใช้เป็นตัวแทนในการประมาณค่าการสูญเสียดินในพื้นที่ศึกษาได้ต่อไป

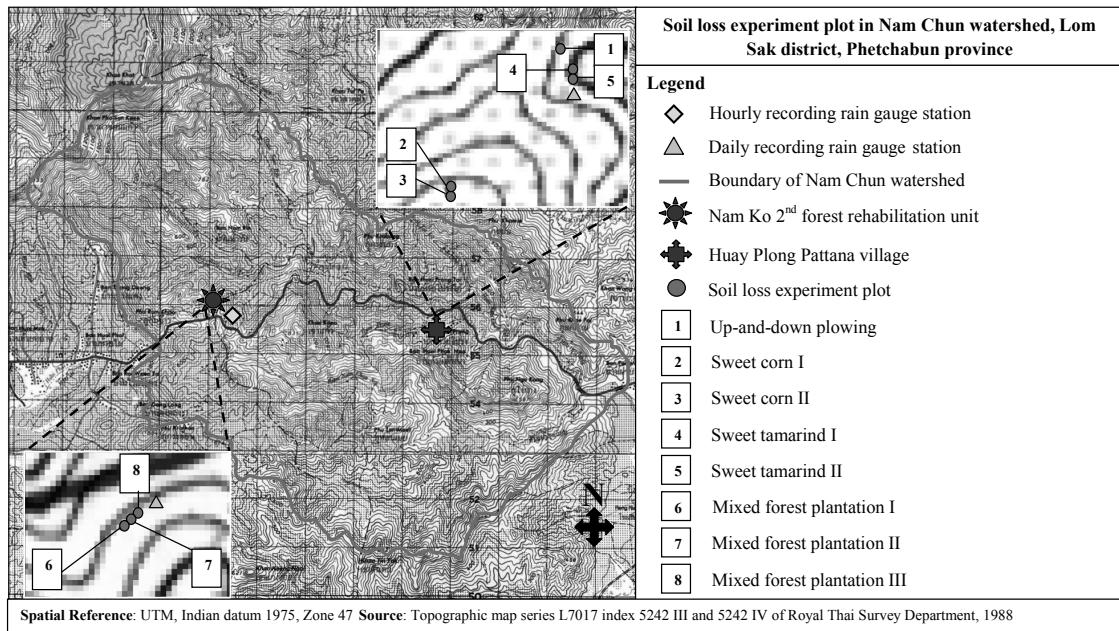
อุปกรณ์และวิธีการ

ພົນກົດໆສົກ່າ

ลุ่มน้ำชุน อำเภอหล่มสัก จังหวัดเพชรบูรณ์ ตั้งอยู่ริมแม่น้ำชุน ทางภาคตะวันตก ที่ $16^{\circ} 44' - 16^{\circ} 48'$ เหนือ และ ลองจิจูดที่ $101^{\circ} 2' - 101^{\circ} 9'$ ตะวันออกลักษณะทาง ภูมิประเทศเป็นเนินเขาและเนินเขาที่ลาดชันสูงกว่าระดับน้ำ ทะเลปานกลางตั้งแต่ 240-1,509 เมตร ครอบคลุมพื้นที่ ประมาณ 67 ตารางกิโลเมตร ลักษณะภูมิอากาศได้รับ อิทธิพลจากลมรุ่มตะวันออกเฉียงเหนือและตะวันตก เนียงให้ จัดเป็นเขตว่อนชื้น ความชื้นสูง อุณหภูมิปานกลางถึงสูง มีฤดูฝนและฤดูแล้งอย่างชัดเจน ฤดูฝนเริ่ม เดือนพฤษภาคมถึงตุลาคม โดยมีปริมาณน้ำฝนเฉลี่ย 1,087.6 มิลลิเมตรต่อปี มีอุณหภูมิเฉลี่ย 27.7 องศาเซลเซียส โดยมีอุณหภูมิสูงสุด 33.2 องศาเซลเซียส ในเดือน เมษายนและอุณหภูมิต่ำสุด 22.2 องศาเซลเซียส ในเดือน ธันวาคม (กรมอุตุนิยมวิทยา, 2551) การใช้ประโยชน์ ที่ดินในพื้นที่ประกอบด้วย พืชไร่ สามารถพูดได้ว่า ไปบนพื้นที่มีความลาดชัน ได้แก่ ข้าวโพด ถั่วเขียว ผักชี ขิง มะเขือเทศ ถั่วฝักยาว และข้าว ป้าธรรมชาติ สามารถ พูดได้ว่า ไปบนพื้นที่ลาดชันสูง และยากแก่การเข้าถึง ส่วนใหญ่เป็นไม้สัก ตะแบก และกัลปพฤกษ์ ทุ่งหญ้ากิด ขึ้นทั่วไปในพื้นที่ร่วนและบางส่วนของพื้นที่เกย์ตระรรรม ซึ่งส่วนใหญ่เป็นหญ้าค่า ไม้ผลพืชบ้างในบางพื้นที่ ส่วนใหญ่ เป็นมะขามหวาน มะม่วง น้อยหน่า (สำนักสำรวจและ วางแผนการใช้ที่ดิน, 2549)

การรวมข้อมูล

รวมรวมข้อมูลทุคิญมิได้แก่ แผนที่ซึ่งครอบคลุมบริเวณคุณน้ำย้อยน้ำชุน เช่น แผนที่ภูมิประเทศของกรมแผนที่ทหารระหว่าง 5242 III และ 5242 IV มาตราส่วน 1: 50,000 แผนที่การใช้ประโยชน์ที่ดิน มาตราส่วน 1: 50,000 ปี พ.ศ. 2549 ในรูปแบบระบบภูมิสารสนเทศของกรมพัฒนาที่ดิน ข้อมูลสภาพภูมิอาณาเขตของกรมอุตุนิยมวิทยา ซึ่งแบ่งเป็นข้อมูลน้ำฝน และอุณหภูมิระหว่างปี พ.ศ. 2520-2551 ข้อมูลชุดดินจากรายงานการสำรวจที่ดินจังหวัดเพชรบูรณ์ของกรมพัฒนาที่ดิน


รวมไปถึงการตรวจสอบเอกสารที่เกี่ยวข้องมาเพื่อการกำหนดเทคนิคที่นำมาใช้เก็บข้อมูลในภาคสนาม และกำหนดรูปแบบการแปรผลในแบบจำลองการประมาณค่าการสูญเสียดิน

การสร้างแปลงทดลอง

สร้างแปลงทดลองการสูญเสียดินขนาด 5×10 เมตร บริเวณบ้านห้วยโprobeงพัฒนาซึ่งอยู่ในพื้นที่ลุ่มน้ำชุน บนแปลงไถพรawn ชั้นลง จำนวน 1 แปลง แปลงปลูกข้าวโพดหวาน จำนวน 2 แปลง และแปลงปลูกมะขามหวาน จำนวน 2 แปลง และวางแผนทดลองที่หน่วยปลูกพื้นฟูป่าใกล้หน่วยที่ 2 บนแปลงปลูกสวนป่าผสม จำนวน 3 แปลง รวมทั้งสิ้น 8 แปลง (Figure 1) สำหรับจำนวนชั้นของแปลงทดลองของแต่ละพื้นที่การใช้ประโยชน์ที่ดินที่ไม่เท่ากันนั้นมีข้อจำกัดในเรื่องของการอนุญาตให้เข้าใช้พื้นที่ของเจ้าของที่ดิน

การเก็บรวบรวมข้อมูล

เก็บรวบรวมข้อมูลน้ำฝนรายชั่วโมงจากเครื่องวัดน้ำฝนแบบอัตโนมัติจากสถานีวัดน้ำฝนเขาก้อประจำปี พ.ศ. 2549 ของโครงการชลประทานจังหวัดเพชรบูรณ์ นำมาเฉลี่ยเป็นราย 30 นาที เพื่อให้สอดคล้องกับการคำนวณค่าดัชนีพลังงานจนน์ของฝนรายครั้ง ($EI_{30\text{max}}$) ใช้เป็นปัจจัยร่วมประมาณค่าการสูญเสียดินในแบบจำลอง USLE และเก็บข้อมูลน้ำฝนรายวันจากเครื่องวัดน้ำฝนแบบไม่มีอัตโนมัติ จากบ้านห้วยโprobeงพัฒนา และหน่วยปลูกพื้นฟูป่าใกล้หน่วยที่ 2 นำมาคำนวณค่าพลังงานจนน์ของฝน ใช้เป็นปัจจัยร่วมประมาณค่าการสูญเสียดินในแบบจำลอง MMF (Morgan, 1986) และ RMMF (Saengtongpinit, 2004) เลือกใช้ข้อมูลระหว่างเดือนพฤษภาคม-ตุลาคม 2549 เพื่อให้สอดคล้องกับปริมาณตะกอนดินที่ได้จากการตรวจวัด

Figure 1 Location of soil loss experiment plot in Nam Chun watershed, Lom Sak district, Phetchabun province.

เก็บตัวอย่างดินบริเวณแปลงทดลองวัดตะกอนดินทั้ง 8 แปลง โดยกำหนดจุดเก็บตัวอย่างจำนวน 3 จุดต่อหนึ่งแปลงทดลองที่ระดับความลึก 0-30 และ 30-50 เซนติเมตร เพื่อทำการวิเคราะห์องค์ประกอบทางกายภาพ โดยตัวอย่างดินจากหกุณจะด้วยสว่านเจาะดิน (soil augers) ใช้ประมาณค่าความคงทนต่อการถูกชี้ล่างพังทลายของดิน (K-factor) ในแบบจำลอง USLE และตัวอย่างดินจากหกุณขนาด $30 \times 50 \times 50$ เซนติเมตรบรรจุในกระบอกเก็บตัวอย่างดิน (soil core) ใช้เป็นปัจจัยร่วมในการประมาณค่าความสูงของน้ำไห้น้ำหน้าดิน (มิลลิเมตร) ในแบบจำลอง MMF และ RMMF วัดความลาดชันบริเวณแปลงทดลองวัดตะกอนดินทั้ง 8 แปลง ด้วยเครื่องวัดความลาดชัน (abney hand level) และวัดความยาวความลาดชันด้วยสายวัด ผลลัพธ์ที่ได้ใช้เป็นปัจจัยร่วมประมาณค่าการสูญเสียดินในแบบจำลอง USLE, MMF และ RMMF

ถ่ายภาพพืชพรรณที่บ้านปักคุณบริเวณลุ่มน้ำชุม เพื่อนำมาประกอบการตัดสินใจเลือกใช้ปัจจัยการใช้ประโยชน์ที่ดินสำหรับนำเข้าแบบจำลองการประมาณค่าการสูญเสียดินทั้ง 3 แบบจำลอง วัดขนาดความสูงทรงพุ่มของพืชพรรณที่บ้านในแปลงวัดตะกอนดินทั้ง 8 แปลง โดยผลลัพธ์ที่ได้ใช้เป็นปัจจัยร่วมประมาณค่าการสูญเสียดินที่เกิดขึ้นจากแบบจำลอง MMF และ RMMF

ตรวจวัดประมาณต่อตะกอนดินจากบ่อรับน้ำและดักตะกอนซึ่งอยู่ปลายสุดด้านล่างของแปลงทดลองเก็บต่อตะกอนดินทุก 15 วัน ตั้งแต่ 1 พฤษภาคม - 31 ตุลาคม พ.ศ. 2549 เป็นจำนวน 12 ครั้ง ส่งวิเคราะห์หน้าหนังก้แห้งที่สำนักวิทยาศาสตร์คืน กรมพัฒนาที่ดิน ผลลัพธ์ที่ได้นำมาเปรียบเทียบกับประมาณต่อตะกอนดินที่ประมาณค่าได้จากแบบจำลอง USLE, MMF และ RMMF

การวิเคราะห์ข้อมูล

คำนวณหาอัตราการสูญเสียดินจากแต่ละแบบจำลอง และเปรียบเทียบผลการประมาณของแต่ละแบบจำลองกับประมาณต่อตะกอนดินที่ได้จากการตรวจวัด โดยวิเคราะห์ผลรวมกำลังสองของความคลาดเคลื่อน (sum square error; SSE)

ผลและวิจารณ์

ประมาณต่อตะกอนดินที่ได้จากการตรวจวัด

การศึกษาวิจัยในครั้งนี้ ได้ปริมาณต่อตะกอนดินจากแปลงไก่พรวนเข็นลงมีค่าเท่ากับ 9.04 ตันต่อไร่ต่อ 6 เดือน แปลงปลูกข้าวโพดหวานแปลงที่ 1 และ 2 มีค่าเท่ากับ 2.06 และ 2.11 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ แปลงปลูกมะขามหวานแปลงที่ 1 และ 2 มีค่าเท่ากับ 3.33 และ 3.48 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ และแปลงปลูกสวนป่าผสมแปลงที่ 1, 2 และ 3 มีค่าเท่ากับ 0.40, 0.42 และ 0.38 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ โดยมีค่าเฉลี่ยปริมาณต่อตะกอนดินจากแปลงไก่พรวนเข็นลง แปลงปลูกข้าวโพดหวานแปลงปลูกมะขามหวาน และแปลงปลูกสวนป่าผสมเท่ากับ 9.04, 2.09, 3.41 และ 0.40 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ

การประมาณค่าพารามิเตอร์ที่ใช้ในแต่ละแบบจำลอง

แบบจำลอง USLE ใช้พารามิเตอร์ ได้แก่ ดัชนีพลังงานลงน์ของฝน (EI_{30max}) มีค่าเท่ากับ 1017.48 เมตริกตันต่อเซกแตร์ใช้เป็นตัวแทนในทุกแปลงทดลอง เนื่องจากมีสถานีตรวจวัดน้ำฝนที่มีความละเอียดสูงที่สุดระดับรายชั่วโมงซึ่งครอบคลุมพื้นที่ศึกษาที่อยู่แห่งเดียวเท่านั้น ค่าความคงทนของการกร่อนของดิน (K-factor) ด้วยวิธีของ Williams *et al.* (1990) ของแปลงไก่พรวนเข็นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมะขามหวาน และแปลงป่าปลูกผสม มีค่าเท่ากับ 0.25, 0.28, 0.28 และ 0.29 ตามลำดับ ค่าความลาดเทและความยาวความลาดเท (LS-factor) จากการวัดผลด้วย abney hand level ของแปลงไก่พรวนเข็นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมะขามหวาน และแปลงป่าปลูกผสม มีค่าเท่ากับ 0.31, 0.29, 1.05 และ 1.78 ตามลำดับ ค่าดัชนีพืชปักคุณดิน (C-factor) ของกรมพัฒนาที่ดิน (2545) ของแปลงไก่พรวนเข็นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมะขามหวาน และแปลงป่าปลูกผสม มีค่าเท่ากับ 1.00, 0.502 0.15 และ 0.088 ตามลำดับ C-factor จากวิธี EI_{30max} ของแปลงปลูกข้าวโพดหวาน

แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม มีค่าเท่ากับ 0.299, 0.140 และ 0.010 ตามลำดับ C-factor จากวิธีหารัศมีของแปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม มีค่าเท่ากับ 0.298, 0.139 และ 0.010 ตามลำดับ และค่าดัชนีมาตรการที่ใช้ในการควบคุมการสูญเสียดิน (P-factor) ของกรมพัฒนาที่ดิน (2545) มีค่าเท่ากับ 1 ในทุกแปลงทดลอง

แบบจำลอง MMF ใช้พารามิเตอร์ได้แก่ ปริมาณน้ำฝนรายวัน (R-factor) ซึ่งครอบคลุมระยะเวลาศึกษา วิจัยของแปลงทดลอง ไอลิววนชื่นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน มีค่าเท่ากันคือ 1805.80 มิลลิเมตรต่อ 6 เดือน สำหรับแปลงป่าปลูกผสม มีค่าเท่ากับ 1907.50 มิลลิเมตรต่อ 6 เดือน และน้ำค่าปริมาณน้ำฝนรายวันดังกล่าวมาคำนวณหาผลลัพธ์งาน斤น้ำฝน ด้วยวิธีของ Morgan (1986) ความหนาแน่นรวมของดิน (ρ_b ; BD-factor) จากตัวอย่างดินที่ผู้วิจัยเก็บจากแต่ละแปลงทดลองนำมาวิเคราะห์ในห้องปฏิบัติการทางวิทยาศาสตร์ ของสำนักวิทยาศาสตร์เพื่อการพัฒนาที่ดิน กรมพัฒนาที่ดิน ของแปลงไอลิววนชื่นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม มีค่าเท่ากับ 1.24, 1.34, 1.40 และ 1.37 กรัมต่อลูกบาศก์เซนติเมตร ตามลำดับ ความหนาแน่นของฝนชนิดที่มีผลต่อการสูญเสียดิน (I-factor) ประยุกต์ใช้ข้อมูลของ Morgan (1986) มีค่าเท่ากับ 25 มิลลิเมตรต่อชั่วโมง สมรรถนะน้ำพืชชีด (P; A-factor) ของแปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม ประยุกต์ใช้ข้อมูลของ Saengtongpinit (2004) มีค่าเท่ากับ 0.25, 0.20 และ 0.33 ตามลำดับ สำหรับแปลงไอลิววนชื่นลง ไม่มีพืชชีนปักคลุมจึงประมาณค่า P; A-factor ไม่ได้ เปอร์เซ็นต์ความชื้นของดินที่ความชื้นสำน้ำ (F_c ; MS-factor) ของแปลงไอลิววนชื่นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม ประยุกต์ใช้ข้อมูลของ Saengtongpinit (2004) เชนกัน มีค่าเท่ากับ 0.26, 0.31, 0.26 และ 0.20

ตามลำดับ อัตราส่วนค่าน้ำ (E_t/E_p ; E_t/E_0 -factor) ของแปลงไอลิววนชื่นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม ประยุกต์ใช้ข้อมูลของ Saengtongpinit (2004) เชนกัน มีค่าเท่ากับ 0.05, 0.70, 0.90 และ 0.88 ตามลำดับ ความลึกของรากอาหารพืช (RD; EHD-factor) ของแปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม ประยุกต์ใช้ข้อมูลของ Saengtongpinit (2004) เชนกัน มีค่าเท่ากับ 0.12, 0.15 และ 0.14 เมตร ตามลำดับ เนื่องจากในแปลงไอลิววนชื่นลง ไม่มีรากอาหารพืชเข้ามาเกี่ยวข้องจึงประยุกต์ใช้ค่าความลึกของดินจนถึงระดับที่น้ำซึมผ่านไม่ได้ตามรายงานการสำรวจดินของสำนักสำรวจดินและวางแผนการใช้ที่ดิน (ม.ป.ป.) มีค่าเท่ากับ 0.38 เมตร สำหรับค่า K-factor, LS-factor และ C-factor ใช้ค่าเดียวกันกับแบบจำลอง USLE

แบบจำลอง RMMF ใช้พารามิเตอร์เช่นเดียวกับแบบจำลอง USLE แต่เพิ่มเติมในส่วนของเปอร์เซ็นต์ปักคลุมของเรือนยอด (CC-factor) โดยที่แปลงไอลิววนชื่นลง และแปลงปลูกข้าวโพดหวาน ประยุกต์ใช้ข้อมูลของ Saengtongpinit (2004) สำหรับแปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม ได้จากการตรวจของผู้ศึกษา วิจัยด้วยวิธีสังห์ท้อนภาพเรือนยอดผ่านกระบวนการจำลองภาพนั้นบนกระดานดอทกริด คัดลอกภาพที่ได้ผ่านเครื่องสแกนภาพ และประมาณค่า CC-factor บนโปรแกรม Arc GIS เวอร์ชัน 9.2 มีค่าเท่ากับ 0.03, 0.51, 0.40 และ 0.14 ตามลำดับ ความเชื่อมแน่นของดิน (COH-factor) ของแปลงไอลิววนชื่นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม ประยุกต์ใช้ข้อมูลของ Saengtongpinit (2004) เชนกัน มีค่าเท่ากับ 7.78, 8.69, 0.26 และ 12.00 ตามลำดับ และสิ่งคลุมดินระดับพื้นด่าง (GC-factor) ของแปลงไอลิววนชื่นลง ปลูกข้าวโพดหวาน แปลงปลูกมະหานหวาน และแปลงป่าปลูกผสม ประยุกต์ใช้ข้อมูลของ Yazidhi (2003) มีค่าเท่ากับ 0.05, 0.10, 0.90 และ 0.85 ตามลำดับ

การสูญเสียดินที่ประมาณค่าได้จากแต่ละแบบจำลอง

การสูญเสียดินที่ประมาณค่าได้จากแต่ละแบบจำลองในพื้นที่ลุ่มน้ำชุม อําเภอหล่มสัก จังหวัดเพชรบูรณ์ ดังรายละเอียดใน Table 1 แยกอธิบายได้ดังนี้

การสูญเสียดินที่ประมาณค่าได้จากแบบจำลอง USLE, MMF และ RMMF เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) ของแปลงไกพรวนชื่นลง มีค่าเท่ากับ 12.58, 2.50 และ 2.50 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ ของแปลงปลูกข้าวโพดหวาน มีค่าเท่ากับ 6.39, 2.26 และ 1.52 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ ของแปลงปลูกมะขามหวาน มีค่าเท่ากับ 7.16, 2.35 และ 1.35 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ ของแปลงป่าปลูกผสม มีค่าเท่ากับ 7.37, 1.85 และ 1.71 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ

การสูญเสียดินที่ประมาณค่าได้จากแบบจำลอง USLE, MMF และ RMMF เมื่อใช้ C-factor จากวิธี

$EI_{30\max}$ ของแปลงไกพรวนชื่นลง มีค่า C-factor เกิน 1 จึงไม่นำค่าดังกล่าวมาใช้ในการประมาณค่าการสูญเสียดินในทุกแบบจำลอง ของแปลงปลูกข้าวโพดหวาน มีค่าเท่ากับ 3.80, 1.35 และ 1.10 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ ของแปลงปลูกมะขามหวาน มีค่าเท่ากับ 6.68, 2.20 และ 1.31 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ ของแปลงป่าปลูกผสม มีค่าเท่ากับ 0.81, 0.21 และ 0.21 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ

การสูญเสียดินที่ประมาณค่าได้จากแบบจำลอง USLE, MMF และ RMMF เมื่อใช้ C-factor จากวิธีหาอัตราส่วน ของแปลงไกพรวนชื่นลง มีค่า C-factor เกิน 1 จึงไม่นำค่าดังกล่าวมาใช้ในการประมาณค่าการสูญเสียดินในทุกแบบจำลอง เช่นกัน ของแปลงปลูกข้าวโพดหวาน มีค่าเท่ากับ 3.79, 1.36 และ 1.11 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ ของแปลงปลูกมะขามหวาน มีค่าเท่ากับ 6.63, 2.18 และ 1.30 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ ของแปลงป่าปลูกผสม มีค่าเท่ากับ 0.83, 0.21 และ 0.21 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ

Table 1 Soil loss estimation from each model and the observed sediment and statistical testing using difference C-factor.

Model	Land Use	Observed sediment	Soil loss (t/rai/6 month) and statistical testing using difference C-factor								
			C-factor by LDD (2002)			C-factor by $EI_{30\max}$ method			C-factor by ratio method		
			Estimated sediment	SSE	SD	Estimated sediment	SSE	SD	Estimated sediment	SSE	SD
USLE											
Up-and-down plowing	8.55	12.58	1.17	12.30	-	-	-	-	-	-	
Sweet corn	1.97	6.39	0.67	3.99	3.80	0.33	0.98	3.79	0.34	1.01	
Sweet tamarind	3.19	7.16	0.67	4.06	6.68	0.61	3.36	6.63	0.61	3.30	
Mixed forest plantation	0.40	7.37	0.94	8.01	0.81	0.04	0.01	0.83	0.07	0.04	
MMF											
Up-and-down plowing	8.55	2.50	0.93	7.79	-	-	-	-	-	-	
Sweet corn	1.97	2.26	0.31	0.88	1.35	0.20	0.54	1.36	0.20	0.35	
Sweet tamarind	3.19	2.35	0.34	1.02	2.20	0.32	0.91	2.18	0.32	0.90	
Mixed forest plantation	0.40	1.85	0.32	0.91	0.21	0.04	0.02	0.21	0.04	0.02	
RMMF											
Up-and-down plowing	8.55	2.50	0.93	7.79	-	-	-	-	-	-	
Sweet corn	1.97	1.52	0.13	0.15	1.10	0.15	0.21	1.11	0.15	0.21	
Sweet tamarind	3.19	1.35	0.24	0.52	1.31	0.24	0.54	1.30	0.25	0.54	
Mixed forest plantation	0.40	1.71	0.28	0.72	0.21	0.04	0.02	0.21	0.04	0.02	

Remarks: C-factor estimation using $EI_{30\max}$ and ratio method in up-and-down plowing plot was >1 , so C-factor was not used in USLE, MMF and RMMF models; SSE = sum square error and SD = standard deviation.

การเปรียบเทียบแบบจำลอง

ผลการศึกษา (Table 1) นำมาเปรียบเทียบเพื่อพิจารณาแบบจำลองที่มีความเหมาะสมที่สุดที่จะใช้เป็นตัวแทนการประมาณค่าการสูญเสียดินในพื้นที่ลุ่มน้ำชุนอธิบายนได้ดังนี้

การประมาณค่า C-factor จากวิธี $EI_{30\max}$ ซึ่งตรงกับลำดับวันที่ 45 ของการตรวจวัดปริมาณตะกอนดิน มีค่าเกิน 1 ในแปลงป่าลูกข้าวโพดหวาน และป่าลูกมะขามหวาน จึงไม่ใช้ C-factor ในวันดังกล่าวมาใช้ในการประมาณค่าการสูญเสียดินของแบบจำลอง USLE, MMF และ RMMF และเพื่อความสอดคล้องของข้อมูลในการวิเคราะห์ผลทางสถิติ จึงไม่นำปริมาณตะกอนดินที่ตรวจวัดได้ในวันที่ 45 มาใช้ปริมาณตะกอนดินที่ได้จากการตรวจวัดของแปลงไกพร่วนขึ้นลง แปลงป่าลูกข้าวโพดหวาน แปลงป่าลูกมะขามหวาน และแปลงป่าลูกผสม จึงมีค่าเท่ากับ 8.55, 1.97, 3.19 และ 0.40 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ

แปลงไกพร่วนขึ้นลง C-factor ซึ่งหาจากวิธี $EI_{30\max}$ และวิธีหาอัตราส่วนมีค่าเกิน 1 จึงไม่นำค่าดังกล่าวมาใช้ในการประมาณค่าการสูญเสียดินของแบบจำลอง USLE, MMF และ RMMF ดังนั้นการประมาณค่าการสูญเสียดินของแต่ละแบบจำลองจึงใช้ C-factor ของกรมพัฒนาที่ดิน (2545) เท่านั้น

เมื่อเปรียบเทียบผลการประมาณค่าการสูญเสียดินที่ได้จากแต่ละแบบจำลองกับปริมาณตะกอนดินที่ตรวจวัดได้จริง พบว่า แบบจำลอง USLE ให้ผลการประมาณลูกต้องมากที่สุดในแปลงป่าลูกผสม เมื่อใช้ C-factor จากวิธี $EI_{30\max}$ มีค่าประมาณการสูญเสียดินเท่ากับ 0.81 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.04 รองลงมาคือ ในแปลงป่าลูกข้าวโพดหวานเมื่อใช้ C-factor จากวิธี $EI_{30\max}$ และในแปลงป่าลูกมะขามหวาน เมื่อใช้ C-factor จากวิธีหาอัตราส่วน มีค่าประมาณการสูญเสียดินเท่ากับ 3.80 และ 6.63 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ มีค่า SSE เท่ากับ 0.33 และ 0.61 ตามลำดับ ส่วนแปลงไกพร่วนขึ้นลงให้ผลการประมาณลูกต้องน้อยที่สุด เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) มีค่าประมาณการสูญเสียดินเท่ากับ 2.50 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.93

มีค่าประมาณการสูญเสียดินเท่ากับ 12.58 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 1.17

สำหรับแบบจำลอง MMF ให้ผลการประมาณลูกต้องมากที่สุดในแปลงป่าลูกผสม เมื่อใช้ C-factor จากวิธี $EI_{30\max}$ และวิธีหาอัตราส่วน มีค่าประมาณการสูญเสียดินเท่ากับ 0.21 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.04 รองลงมาคือ ในแปลงป่าลูกข้าวโพดหวานเมื่อใช้ C-factor จากวิธีหาอัตราส่วน และในแปลงป่าลูกมะขามหวานเมื่อใช้ C-factor จากวิธี $EI_{30\max}$ มีค่าประมาณการสูญเสียดินเท่ากับ 1.35 และ 2.18 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ มีค่า SSE เท่ากับ 0.20 และ 0.32 ตามลำดับ ส่วนแปลงไกพร่วนขึ้นลงให้ผลการประมาณลูกต้องน้อยที่สุด เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) มีค่าประมาณการสูญเสียดินเท่ากับ 2.50 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.93

สำหรับแบบจำลอง RMMF ให้ผลการประมาณลูกต้องมากที่สุดในแปลงป่าลูกผสม เมื่อใช้ C-factor จากวิธี $EI_{30\max}$ และวิธีหาอัตราส่วน มีค่าประมาณการสูญเสียดินเท่ากับ 0.21 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.04 รองลงมาคือ ในแปลงป่าลูกข้าวโพดหวานเมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) และในแปลงป่าลูกมะขามหวานเมื่อใช้ C-factor จากวิธีหาอัตราส่วนเริ่มน้อย กับ มีค่าประมาณการสูญเสียดินเท่ากับ 1.52 และ 1.31 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ มีค่า SSE เท่ากับ 0.13 และ 0.24 ตามลำดับ ส่วนแปลงไกพร่วนขึ้นลงให้ผลการประมาณลูกต้องน้อยที่สุด เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) มีค่าประมาณการสูญเสียดินเท่ากับ 2.50 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.93

อย่างไรก็ตาม เมื่อพิจารณาถึงผลการประมาณค่าการสูญเสียดินให้สอดคล้องกับลำดับวันที่ตรวจวัดปริมาณตะกอนดิน พบว่า แบบจำลอง MMF และ RMMF ไม่เกิดตะกอนดินซึ่งตรงกับวันที่ 75 และ 90 ในแปลงป่าลูกมะขามหวาน และไม่เกิดตะกอนดินซึ่งตรงกับวันที่ 60, 75, 105 และ 120 ในแปลงป่าลูกผสม ในขณะที่พบปริมาณตะกอนดินที่ได้จากการตรวจวัดทุกครั้ง

และจากรายงานผลการศึกษาที่กล่าวมาในข้างต้นนำมาสรุปเป็นข้อดีข้อด้อยของแต่ละแบบจำลองแยกอธิบายได้ดังนี้

ข้อดีของแบบจำลอง USLE ได้แก่ 1) สามารถประยุกต์ใช้ดัชนีพื้นที่ปoclum คิน (C-factor) ซึ่งหาได้จาก วิธี EI_{30max} และจากวิธีหาอัตราส่วน โดยที่ C-factor ดังกล่าวสามารถลดความคลาดเคลื่อนของการสูญเสียดินได้มากกว่าเมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) เป็นพารามิเตอร์ ซึ่งพิจารณาได้จากค่า SSE ที่น้อยกว่า 2) ปัจจัยนำเข้าแบบจำลองไม่มาก และมีขั้นตอนในการคำนวณไม่สลับซับซ้อนมากนัก

ข้อดีของแบบจำลอง USLE ได้แก่ ดัชนี พลังงานจนน์ของฝน (R-factor) โดยวิธี EI_{30max} ต้องการ ข้อมูลนำฝนราย 30 นาที ซึ่งในพื้นที่ศึกษาบังคับด้วยน้ำ จำเป็นต้องติดตั้งเครื่องมือตรวจน้ำฝนให้สอดคล้อง กับความต้องการ ในขณะที่แบบจำลอง MMF และ RMMF ต้องการข้อมูลนำฝนรายวัน ซึ่งในพื้นที่ศึกษา มีสถานีตรวจน้ำฝนที่เก็บรวบรวมข้อมูลดังกล่าว ดังนั้นการนำข้อมูลนำฝนรายวันมาใช้ย่อมสะดวกกว่า การติดตั้งเครื่องมือตรวจน้ำฝนราย 30 นาที

ข้อดีของแบบจำลอง MMF ได้แก่ R-factor ที่ใช้ในแบบจำลอง MMF ต้องการข้อมูลนำฝนรายวัน ซึ่งในพื้นที่ศึกษามีสถานีตรวจน้ำฝนที่เก็บรวบรวม ข้อมูลดังกล่าวเจาะจงต่อการนำข้อมูลมาใช้

ข้อดีของแบบจำลอง MMF ได้แก่ 1) C-factor ซึ่งหาได้จากวิธี EI_{30max} และจากวิธีหาอัตราส่วน ไม่สามารถประยุกต์ใช้ได้กับแบบจำลอง MMF ซึ่งพิจารณาจากค่า SSE ที่ไม่มีความแตกต่างกัน 2) ปัจจัยนำเข้าแบบจำลองมาก และมีขั้นตอนในการคำนวณสลับซับซ้อน 3) ปัจจัยนำเข้าแบบจำลองที่เก็บข้อมูลด้วยความน่าเชื่อถือ อาทิ I-factor, P; A-factor, F_c; MS-factor, RD; EHD-factor, E_t/E_p; E_t/E₀-factor, Q-factor และ C-factor จำเป็นต้องศึกษาวิธีปัจจัยต่างๆ เหล่านี้ให้มีความน่าเชื่อถือ ซึ่งต้องใช้ระยะเวลา多く 4) ผลการประมาณ พบว่า แบบจำลอง MMF ไม่เกิดตะกอนคิน ซึ่งตรงกับวันที่ 75 และ 90 ในแปลงปลูกะษานหวาน และไม่เกิดตะกอนคินที่ได้จากการตรวจทุกครั้ง เช่นเดียวกับแบบจำลอง MMF

และไม่เกิดตะกอนคินซึ่งตรงกับวันที่ 60, 75, 105 และ 120 ในแปลงป่าปลูกะษาน ในขณะที่พบประมาณตะกอนคินที่ได้จากการตรวจทุกครั้ง

ข้อดีของแบบจำลอง RMMF ได้แก่ R-factor ที่ใช้ในแบบจำลอง RMMF ต้องการข้อมูลนำฝนรายวัน เช่นเดียวกับแบบจำลอง MMF ซึ่งในพื้นที่ศึกษาจังหวัดมีสถานีตรวจน้ำฝนที่เก็บข้อมูลดังกล่าวเจาะจงต่อการนำข้อมูลมาใช้

ข้อดีของแบบจำลอง RMMF ได้แก่ 1) ปัจจัยนำเข้าแบบจำลองที่เก็บข้อมูลด้วยความน่าเชื่อถือ เช่นเดียวกับแบบจำลอง MMF นอกจากนี้แบบจำลอง RMMF ยังต้องการศึกษาวิธีเพิ่มเติมในส่วนของ CC-factor, COH-factor และ GC-factor สำหรับให้ต้องใช้ระยะเวลาในการศึกษาวิธีปัจจัยนำเข้าแบบจำลอง RMMF มากกว่าแบบจำลอง MMF ซึ่งไม่มีปัจจัยดังกล่าวมากเท่าข้าง 2) ผลการประมาณ พบว่า แบบจำลอง RMMF ไม่เกิดตะกอนคินซึ่งตรงกับวันที่ 75 และ 90 ในแปลงปลูกะษานหวาน และไม่เกิดตะกอนคินซึ่งตรงกับวันที่ 60, 75, 105 และ 120 ในแปลงป่าปลูกะษาน ในขณะที่พบประมาณตะกอนคินที่ได้จากการตรวจทุกครั้ง เช่นเดียวกับแบบจำลอง MMF

สรุปผลการเปรียบเทียบแต่ละแบบจำลอง

จากการเปรียบเทียบในข้างต้น พบว่าแบบจำลอง USLE, MMF และ RMMF ให้ผลการประมาณถูกต้องที่สุดร่วมกันในแปลงป่าปลูกะษานเมื่อใช้ C-factor จากวิธี EI_{30max} และวิธีหาอัตราส่วน สำหรับแปลงปลูกะษานพอดหวาน แบบจำลอง RMMF ให้ผลการประมาณถูกต้องมากที่สุด เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) สำหรับแปลงปลูกะษานหวาน แบบจำลอง RMMF ให้ผลการประมาณถูกต้องมากที่สุด เมื่อใช้ C-factor จากวิธี EI_{30max} ส่วนแปลงไกพวนขึ้นลง แบบจำลอง MMF และ RMMF ให้ผลการประมาณถูกต้องมากที่สุดเมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) แสดงให้เห็นว่าแบบจำลอง RMMF มีแนวโน้มในการประมาณค่าได้ถูกต้องมากกว่าแบบจำลอง MMF และ

USLE และ C-factor จากวิธี $EI_{30\max}$ และวิธีห้าอัตราส่วนสามารถลดความคาดเด้อของค่าประมาณการสูญเสียดินของแบบจำลอง USLE และ MMF ไปแปลงปลูกข้าวโพดหวาน และมะม่วงหวาน ได้ดีกว่า C-factor ของกรมพัฒนาที่ดิน (2545) เมื่อพิจารณาถึงข้อดีและข้อด้อยของแต่ละแบบจำลอง สรุปได้ว่า แบบจำลอง MMF และ RMMF มีขั้นตอนสลับซับซ้อน จำเป็นต้องศึกษาวิธีและพำนัชจัดที่เกี่ยวข้องให้มีความน่าเชื่อถือก่อนนำมาประยุกต์ใช้ ซึ่งการศึกษาวิธีครั้งนี้ยังขาดข้อมูลดังกล่าวอยู่ อีกทั้ง I-factor, P; A-factor, CC-factor, COH-factor, F_c; MS-factor, RD; EHD-factor, E_t_p; E_t₀-factor, Q-factor และ C-factor ในขณะที่แบบจำลอง USLE ต้องการศึกษาเพิ่มเติมในส่วนของดัชนีพัฒนาจนน่องฝน (R-factor) และค่าดัชนีพืชปกคลุมดิน (C-factor) ซึ่งมีความสลับซับซ้อนของวิธีการคำนวณในแบบจำลองน้อยกว่า แสดงให้เห็นว่าแบบจำลอง MMF และ RMMF ยังต้องการการศึกษารวมรวม และวิเคราะห์ข้อมูล โดยใช้ระยะเวลามากกว่าแบบจำลอง USLE และเมื่อพิจารณาเปรียบเทียบผลการประมาณค่าการสูญเสียดินกับปริมาณตะกอนดินที่ตรวจวัดได้ พบว่า แบบจำลอง MMF และ RMMF ไม่เกิดตะกอนดินซึ่งตรงกับวันที่ 75 และ 90 ในแปลงปลูกมะม่วงหวาน และไม่เกิดตะกอนดินซึ่งตรงกับวันที่ 60, 75, 105 และ 120 ในแปลงป่าปลูกผสม ในขณะที่พบปริมาณตะกอนดินที่ได้จากการตรวจวัดทุกครั้ง ดังนั้นจึงไม่เหมาะสมที่จะนำแบบจำลอง MMF และ RMMF มาเป็นเครื่องมือใช้ในการวางแผนจัดการการสูญเสียดิน จึงสรุปได้ว่าแบบจำลอง USLE บังหนาส่วนที่สุดที่เป็นตัวแทนในการประมาณค่าการสูญเสียดินในพื้นที่ศึกษานี้

ស្រុប

การศึกษาวิจัยในครั้งนี้ดำเนินการในพื้นที่ลุ่มน้ำชุม อำเภอหล่มสัก จังหวัดเพชรบูรณ์ โดยสร้างแปลงทดลองการสูญเสียดินบนการใช้ประโยชน์ที่ดินที่

แตกต่างกัน ประกอบด้วย การ ไถพรวนขึ้นลง 1 แปลง ปลูกข้าวโพดหวาน 2 แปลง ปลูกมะขามหวาน 2 แปลง และป้าปลูกผสม 3 แปลง ทำการตรวจสอบด้วยตนเองในพื้นที่ระหว่างวันที่ 1 พฤษภาคม - 31 ตุลาคม พ.ศ. 2549 รวม 6 เดือน พนประมวลผลกอนดินที่ตัวตรวจสอบได้จากแปลงไถพรวนขึ้นลง แปลงปลูกข้าวโพดหวาน แปลงปลูกมะขามหวาน และแปลงป้าปลูกผสม เท่ากับ 9.04, 2.09, 3.41 และ 0.40 ตันต่อไร่ต่อ 6 เดือน เมื่อนำมาเปรียบเทียบกับผลการประมาณค่าการสูญเสียดินจากแบบจำลอง USLE, MMF และ RMMF โดยใช้ C-factor ที่แตกต่างกัน โดยแปลงไถพรวนขึ้นลง แบบจำลอง USLE ให้ผลการประมาณถูกต้องมากที่สุดในแปลงป้าปลูกผสม เมื่อใช้ C-factor จากวิธี EI_{30max} มีค่าประมาณการสูญเสียดินเท่ากับ 0.81 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.04 รองลงมาคือ ในแปลงปลูกข้าวโพดหวานเมื่อใช้ C-factor จากวิธี EI_{30max} และในแปลงปลูกมะขามหวานเมื่อใช้ C-factor จากวิธีหารอัตราส่วน มีค่าประมาณการสูญเสียดินเท่ากับ 3.80 และ 6.63 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ มีค่า SSE เท่ากับ 0.33 และ 0.61 ตามลำดับ ส่วนแปลงไถพรวนขึ้นลงให้ผลการประมาณถูกต้องน้อยที่สุด เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) มีค่าประมาณการสูญเสียดินเท่ากับ 12.58 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 1.17 สำหรับแบบจำลอง MMF ให้ผลการประมาณถูกต้องมากที่สุดในแปลงป้าปลูกผสม เมื่อใช้ C-factor จากวิธี EI_{30max} และวิธีหารอัตราส่วน มีค่าประมาณการสูญเสียดินเท่ากับ คือ 0.21 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ คือ 0.04 รองลงมาคือ ในแปลงปลูกข้าวโพดหวานเมื่อใช้ C-factor จากวิธีหารอัตราส่วน และในแปลงปลูกมะขามหวานเมื่อใช้ C-factor จากวิธี EI_{30max} มีค่าประมาณการสูญเสียดินเท่ากับ 1.35 และ 2.18 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ มีค่า SSE เท่ากับ 0.20 และ 0.32 ตามลำดับ ส่วนแปลงไถพรวนขึ้นลงให้ผลการประมาณถูกต้องน้อยที่สุด เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) มีค่าประมาณการสูญเสียดินเท่ากับ 2.50 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.93 สำหรับแบบจำลอง RMMF ให้ผล

การประมาณถูกต้องมากที่สุดในแปลงป่าปลูกผสม เมื่อใช้ C-factor จากวิธี $EI_{30\max}$ และวิธีหาร้อตราช่วง มีค่าประมาณการสูญเสียดินเท่ากัน คือ 0.21 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากัน คือ 0.04 รองลงมาคือ ในแปลงปลูกข้าวโพดหวาน เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) และในแปลงปลูกมะขามหวาน เมื่อใช้ C-factor จากวิธีหาร้อตราช่วงกัน มีค่าประมาณการสูญเสียดินเท่ากัน 1.52 และ 1.31 ตันต่อไร่ต่อ 6 เดือน ตามลำดับ มีค่า SSE เท่ากับ 0.13 และ 0.24 ตามลำดับ ส่วนแปลงไถพรุนขึ้นลงให้ผลการประมาณถูกต้องน้อยที่สุด เมื่อใช้ C-factor ของกรมพัฒนาที่ดิน (2545) มีค่าประมาณการสูญเสียดินเท่ากับ 2.50 ตันต่อไร่ต่อ 6 เดือน มีค่า SSE เท่ากับ 0.93

เมื่อพิจารณาถึงข้อดีข้อด้อยของแต่ละแบบจำลอง พนวณแบบจำลอง MMF และ RMMF มีขั้นตอนสับซับซ้อน จำเป็นต้องศึกษาวิจัยเฉพาะปัจจัยที่เกี่ยวข้องให้มีความน่าเชื่อถือก่อนนำมาประยุกต์ใช้ซึ่งการศึกษาวิจัยครั้งนี้ยังขาดข้อมูลดังกล่าวอยู่อาทิ I-factor, P; A-factor, CC-factor, COH-factor, F_c ; MS-factor, RD; EHD-factor, E_t/E_p ; E_t/E_0 -factor, Q-factor และ C-factor ในขณะที่แบบจำลอง USLE ต้องการศึกษาเพิ่มเติมในส่วนของ R-factor และ C-factor ซึ่งมีความสับซับซ้อนของวิธีการคำนวณในแบบจำลองน้อยกว่าแสดงให้เห็นว่าแบบจำลอง MMF และ RMMF ยังต้องการการศึกษาร่วมและวิเคราะห์ข้อมูล โดยใช้ระยะเวลามากกว่าแบบจำลอง USLE และเมื่อพิจารณาเปรียบเทียบผลการประมาณค่าการสูญเสียดินกับปริมาณตะกอนดินที่ตรวจวัดได้ พนวณแบบจำลอง MMF และ RMMF ไม่เกิดตะกอนดินซึ่งตรงกับวันที่ 75 และ 90 ในแปลงปลูกมะขามหวาน และไม่เกิดตะกอนดินซึ่งตรงกับวันที่ 60, 75, 105 และ 120 ในแปลงป่าปลูกผสม ในขณะที่พนวณแบบจำลอง MMF ที่ได้จากการตรวจวัดทุกครั้ง ดังนั้นจึงยังไม่เหมาะสมที่จะนำแบบจำลอง MMF และ RMMF มาเป็นเครื่องมือใช้ในการวางแผนจัดการการสูญเสียดิน จึงสรุปได้ว่าแบบจำลอง USLE ยังเหมาะสมที่สุดที่เป็นตัวแทนในการประมาณค่าการสูญเสียดินในพื้นที่ศึกษานี้

คำนิยม

ผู้วิจัยขอขอบคุณบัณฑิตวิทยาลัยมหาวิทยาลัยเกษตรศาสตร์ ที่ให้ทุนสนับสนุนงานวิจัยระดับบัณฑิตศึกษา ประจำปี 2549

เอกสารและสิ่งอ้างอิง

กรมพัฒนาที่ดิน. 2545. การประเมินการสูญเสียดินในประเทศไทย. กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.

กรมอุตุนิยมวิทยา. 2551. ข้อมูลปริมาณน้ำฝนรายปี และจำนวนวันฝนตกรายปี. กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ. (CD-ROM).

สำนักสำรวจและวางแผนการใช้ที่ดิน 2549. ข้อมูลปัจจัยใช้ประโยชน์ที่ดิน. กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ. (CD-ROM).

_. ม.ป.ป. ประเภทของดิน. แหล่งที่มา: http://osl.ddd.go.th/easysoil/s_type.htm, 8 พฤษภาคม 2554.

Morgan, R.P.C. 1986. **Soil Erosion & Conservation.** Longman Scientific & Technical. Longman Group Limited, UK.

Saengthongpinit, C. 2004. **Soil Erosion Assessment Using Revised MMF Equations with Special Reference to Terrain Parameter (s).** **Lom Sak district, Thailand.** M.S. Thesis, University of Twente.

Williams J. R., C. A. Jones and P. T. Dyke. 1990. The EPIC model. pp. 3-92. *In EPIC-Erosion/ Productivity Impact Calculator, USDA. ARS Tech. Bul. No.1768.*

Yazidhi, B. 2003. **A Comparative Study of Soil Erosion Modeling in Lom Kao Petchabun, Thailand.** M.S. Thesis, University of Twente.