Thai J. For. 31 (3) : 25-35 (2012) NIAIIUAEAST 31 (3) : 25-35 (2555)

HansznuveIm s lsuaudauuunuiigedemsifuinuay

[
Vanilasamsveugussemsa

Effects of Highland Swidden Farm Burning on
Carbon Storage and Loss to Atmosphere

<
poUANA U5 e Kobsak Wanthongchai'
<
a d ¢ v A
Waaoae WATIaa’ Poonsatit Wongsawat2

" AMZIUMNAAS WHIINOROINBATAAS 99TNT NTUNNA 10900
Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
E-mail: fforksw@ku.ac.th
> dningneounand nsugneonuniand dadthuaziugie 9193ns naumma 10900
National Park Office, Department of National Park, Wildlife and Plant Conservation, Chatuchak, Bangkok 10900, Thailand

@

VAU 20 AU 2554 SURINUN 19 FUNAY 2554

e

ABSTRACT

This research aimed to study carbon storage during the fallow period, loss during
slash-and-burn, and recovery after burning in long fallow period swidden farming, short
fallow period swidden farming in a forest rehabilitation area at Doi Phu Kha National Park,
Nan province. Each site consisted of 3 replication plots, and hence there were 9 plots in
the study. Prior to slashing, fuel loading was estimated using a harvesting method. Moreover,
4 soil samples per plot at depths of 30 cm were also collected to determine the soil and root
carbon contents and their pools. All residues and soil samples were collected immediately
after burning. The transfer of carbon to the atmosphere during burning was calculated as the
differences between the quantities of pre-burning carbon pool (plant and soil and fine
root) and post-burning residues (ash, charred material, unburned material, post-burning soil
and fine roots). In addition, carbon recovery was monitored for 6 months after burning.

The results showed that the carbon pool was highest in the rehabilitation area
(79.22 ton/ha), followed by long swidden farming (73.01 ton/ha), and short swidden farm
(45.56 ton/ha), respectively. However, the carbon pool from tree parts in the rehabilitation
area was not included. A great portion of carbon was stored in the belowground part in
both the long and short swidden farming. The relative carbon loss was lowest on the
rehabilitation site (21%), compared to the swidden farms (ca. 35%). The overall carbon
recovery in the long fallow period swidden farming and in the rehabilitation area was gradual
at a rate of ca. 0.5 ton/ha/month, although the recovery for the short fallow period swidden
farming was not clear. This finding may suggest that slash-and-burn agriculture by allowing
long fallow period swidden farming may be sufficient to restore carbon to a similar level
to pre-burning until the next slash-and-burn begins.
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Figure 1 Location of the study site at Doi Phu Ka National Park.
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Table 1 Total fuel loads (tree and understory included) and understory fuel loads in
long swidden farm (LS), short swidden farm (SS), and rehabilitation site (RH).

Fuel loads (ton/ha)

LS SS RH
Total fuel loads 36.68 (5.10)* 2276 (0.17)° -
Understory fuel loads (tree is not included) 30.84 (4.72)*  19.54 (0.31)" 51.10 (16.25)

Note: Different superscript letters (*°) in a row indicate significant differences (ANOVA, F-test,
P<0.05) in the fuel load values between sites. Standard errors of the mean are given in

parentheses.

Table 2 Aboveground carbon pools in each fuel category and carbon pool in fine roots
during fallow period in long swidden farm (LS), short swidden farm (SS), and

rehabilitation site (RH).

Fuel category LS Carbon poolSsS(ton/ha) RHE p-value
Grass 4.71 (1.43)° 0.04 (0.02)° 13.15 (4.70)* 0.009
Herb 0.66 (0.16)" 2.64 (0.42)° 0.12 (0.05)° 0.000
Litter 6.43 (0.96)™ 4.53 (0.44)° 8.32 (1.50)® 0.054
Shrub 0.45 (0.16)" 1.64 (0.34)* 1.67 (0.95)° 0.264
Seedling and sapling 0.98 (0.27)* 0.00° 0.09 (0.06)° 0.000
Tree 2.80(0.54)° 1.56(0.61)" na 0.048
Fine root 3.55(0.79)* 2.79 (0.63)° 1.07 (1.36)" 0.020
Total* 16.03 (1.62)° 10.41 (0.60)° 23.36 (5.07)° 0.007

Note: Different superscript letters (*°) in a row indicate significant differences (ANOVA, F-test,
P<0.05) in the carbon pools of each fuel category between sites. Standard errors of the mean are

given in parentheses.

Remark: * Carbon pool in fine roots was not included.

Table 3 Pre- and post-burn soil carbon pools in long swidden farm (LS), short swidden
farm (SS), and rehabilitation site (RH).

. Soil depth Carbon pool (ton/ha) p-value
Period (cm) LS sS RH
Pre-burning 30 52.77° 32.36° 31.30°  0.000
Immediately after burning 15 29.61° 20.43° 18.32° 0.000
1 month after burning 30 23.62° 28.46° 16.14°¢ 0.000
3 months after burning 30 23.64° 26.53° 15.99° 0.000
6 months after burning 30 24.95% 25.30° 15.40° 0.000

Note: Different superscript letters (*°) in a row indicate significant differences (ANOVA, F-test,
P<0.05) in the soil carbon pools between sites for each sampling period.
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Figure 2 Pre-burning carbon pool (aboveground and 30-cm belowground) at long
swidden farm (LS), short swidden farm (SS), and rehabilitation site (RH).
Vertical bars show the standard error of the mean.

Remark: * C pool in tree (>4.5 dbh) for RH was not included.
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Figure 3 Relative carbon loss of aboveground and belowground parts by burning at
long swidden farm (LS), short swidden farm (SS), and rehabilitation site
(RH). Vertical bars show the standard error of the mean.
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Figure 4 Proportion of carbon loss from aboveground and belowground parts by burning
at long swidden farm (LS), short swidden farm (SS), and rehabilitation site (RH).



32 Thai J. For. 31 (3) : 25-35 (2012)

] 2 = = g v o J
lliwuunﬂuumiammﬂmiuauauwm

mmﬂﬁsn 1119991NE AN UL UDINTONUA UM
mmwmmwumﬂumﬂm winlseuieudu I
Tuthia 1y sgmud I lulswyudeuiimsgay o
' Y

amsvoueen lunnn lihimevuluh 1wy
MIAAYIVDY Wanthongehai e al. (2008) NWUN

o dy a U 2 o aa 1
msveulugomasluthigesaintoglssmnm 2.5-

Y

o 1 = = a =
5.2 dudetenuas uiimsgadooenlAailuiios
P o ¢ ' Aa 2
$osaz 70-90 fasan (2548) wun lvdmaduly

9

thganssah ldiFemaane i 3.6 ﬁu@imamm{
(ﬂmﬂumiuau"lumu 1.8 mummammi) mamﬂ
mywniud Aefivaandeluiui Tamnmgdu
ﬂmmsuauqluwmﬁéhmﬁmmwmuqaﬂa At

) ' i A ~ g '
Twif Ilunsdrunazawniianuatosge Wudiu
A o W ] < [ g ~
wanudnylumsenuinmsueou 1 uiui

v o ~ ) v
auiumnims lsnasns lumsaruguniswn 14

' PR
ﬁ')u'ﬂﬂaﬁlﬂaﬂﬂgiﬂfJLﬂW']gﬂ']uﬁQﬂa']'JfJQGlUﬁuﬂ
[l @ o 1 = 1 uﬁ/’ =Y <
ﬁ'jllﬂUﬂWiVthﬁ}ﬁrJuWL‘ViaﬂlwaWHHIJEIJuTﬂLﬁﬂaQ
P o v g A A &
ﬂ’Jflfnﬁﬁlllla'JllﬂW§ju@gcluwum@']fﬂ!ﬂuuu’]‘ﬂqﬂ
= o

THﬂ']iﬂﬂﬂ'liﬁI'ﬂJLﬁﬂﬂ'lﬁ‘]Jﬂufl]1ﬂﬂ§$‘]J'Juﬂ1§LW'l
= A 4 vy o o ' =
Lﬁiﬂnwumaﬂﬂmﬂ ﬁ1ﬁ'§ﬂﬂ1§£ﬂ1131’ilﬂlumﬂu
i@ﬂfﬂ')ﬁNﬁ@i@ﬂ'ﬁﬁﬂﬂ\?mﬂﬁﬂ?gﬂﬂuiuauu']ﬂ
£~ 2y v 1o A o
G]f\‘lllﬁ”llﬁﬂll"lﬂ"lﬂﬂﬂil“llﬂ?ﬂﬁlﬂﬂgﬂ"IU'JUIJ"IﬂVlQﬂGlﬂ

‘Wuadut’hammi}uﬂm«famsmﬂuﬁﬂymw@Tﬂﬂa'n
ﬂﬂwmmiauuwmﬁﬂu"lmnﬂ miffmﬁﬂmiuau
muleﬂfluﬂﬁﬁﬂmmmmmmwmwmuuﬂu
A0ANADINUMIANEIVEY Kauffman e al. (1995)
11ae Kotto-Same et al. (1997) uAWUNFATIU
msgadeas veuluauveslsuyuiougani
Y52 athannnnzuaumsnandaruas uﬂmm
suuguiiunes e unrasduna
dananon1sveouluaulasmmzusinuiiau
ieSemieusunswdnaluls f1ai 1iins
qnamediseiiies ingaiisedigalaganiaiy
nau anudeudlidwwansznuasligau
1NN

d A
m‘sﬁztmﬂﬁﬂ@ﬂﬂé’ﬂﬂ]ﬂﬂ%izﬂzﬂﬂ] 6 11U
v v v
AMIVAIMIEINUN 6 1ADY WUIUTUH
s Tdumsazaumsueuludiueisg  ndumn
1 9 09./1 [ A 1 Yya [
08191 Naluavvesnwuazainlaanluly
~ 1y d'dw dy
nyuReusoveuaz 15519 Taehlidasinmsilu
AdUIURIAT UBUMTZINM 0.53 dudelanuas
l v
aodou  Tuvagh lsuyudsuseudunaunui
a @ = <
USuansveudinatuur Tivanaudniieous

1 I~ <
naziu luduilunar 6 hou A (Table 4)

Table 4 Changes in total carbon pools (aboveground and 30 cm belowground) within
6 months after burning in long swidden farm (LS), short swidden farm (SS),

and rehabilitation site (RH).

Post-burning (ton/ha)

Site Pre-burning 1 month 3 months 6 months
LS 73.01 24.84 25.87 27.50
SS 4556 29.44 28.09 27.30
RH 55.54 17.35 18.69 20.02

Remark: * C pool in trees (>4.5 diameter at breast height) for RH was not included.
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