

**STRENGTH PROPERTIES AND DRYING CHARACTERISTICS OF
EUCALYPTUS WOOD GROWN IN BANGLADESH**

M.F. Kabir¹M.A. Sattar¹D.K. Bhattacharjee¹

บทคัดย่อ

การศึกษาคุณสมบัติทางกายภาพของไม้ *Eucalyptus tereticornis*, *E. brassiana* และ *E. camaldulensis* ที่ปลูกในประเทศไทย พบว่า ไม้ *E. tereticornis* มีความหนัก เนื้อไม้แน่น และแข็งแรงมาก ในขณะที่ไม้ *E. brassiana* และ *E. camaldulensis* มีความแน่น และแข็งแรงปานกลาง การทำไม้ยุคอลปัตสให้แห้งเพื่อนำมาใช้ประโยชน์ต้องทำด้วยความระมัดระวัง

ABSTRACT

The physical, mechanical and seasoning properties of *Eucalyptus tereticornis*, *E. brassiana* and *E. camaldulensis* planted in Bangladesh have been investigated. It is found that *Eucalyptus tereticornis* is a heavy, dense and strong timber while *E. brassiana* and *E. camaldulensis* are moderately dense and strong. The timbers are refractory to drying requiring care for seasoning.

INTRODUCTION

Eucalyptus was first introduced in Bangladesh by tea estates in 1930's as an ornamental tree. The elimination trials on the species was carried out by the Bangladesh Forest Research Institute from 1978. After a series of investigation on thirty species of *Eucalyptus*, it was found that only three species, viz., *E. camaldulensis*, *E. tereticornis* and *E. brassiana* were suitable for Bangladesh soil and climate conditions (Davidson and Das,

1985). In the recent years, *Eucalyptus* particularly *camaldulensis* species are planted throughout the country by the farmers, Forest Department and individuals. The fast growing nature of these species makes them popular for timber and fuelwood. Due to the paucity of knowledge on the wood properties of these species, it is considered to be suitable for fuelwood only. This paper deals with the physical and mechanical properties and drying characteristics of these three eucalyptus which will

¹ Bangladesh Forest Research Institute, P.O. Box 273, Chittagong 4000, Bangladesh

ensure their proper utilization. The properties of *E. camaldulensis* studied earlier is included in this paper (Sattar, 1990)

MATERIALS AND METHODS

The full length trees of *Eucalyptus tereticornis* and *E. brassiana* were collected from the Silvicultural Research Station on Charaljani, Tangail. Six trees of 12 year-old were taken for each of the species. All the bolts were fairly straight and free from natural defects. Both ends of the bolt were coated with bituminous paint to check excessive evaporation of moisture and consequent checking. One disc was taken from each bolt for determination of moisture content, specific gravity and shrinkage. The size of the samples were 2.5 x 2.5 x 7.5 cm for these properties.

From each bolt, 6.35 cm x 6.35 cm x 2.50 m sticks were prepared in pairs for determination of mechanical properties. One stick was taken from each pair for conducting the test in green condition and the other for the test in air dry condition. The sticks for air dry test were dried to about 12% moisture content inside a drying shed. All the test sticks were thus dressed to 5.08 cm x 5.08 cm x 2.50 m strips and testing samples were prepared for the different mechanical properties according to ASTM

standards (Anon, 1971). The mechanical tests were carried out in accordance with the specifications of this standard.

The drying characteristics were determined from the planks of 2.5 cm x 20 cm x 2 m dimension. Twelve planks were taken for each of the species. The samples were dried in a steam heated kiln following the drying schedule developed by the Bangladesh Forest Research Institute (Sattar, 1980).

RESULTS

The physical properties, such as specific gravity and shrinkage of *E. tereticornis* and *E. brassiana* are presented in Table 1. The drying time and drying defects are shown in Table 2. The mechanical properties of these species are shown in Tables 3, 4 and 5. The properties of *E. camaldulensis* studied earlier are included in these tables for comparison with two other eucalypts. The physical and mechanical properties of Chittagong teak (*Tectona grandis*) of 40-year old tested earlier (Yakub *et al*, 1978) are also included in the tables to determine the suitability relative to teak. Taking teak as 100 the relative values of these species were calculated and are given in Tables 1, 3, 4 and 5 under the parenthesis.

Table 1. Physical properties of three *Eucalyptus* species (number in blanket shows relative value taken teak as 100)

Species	Locality of timber with age	Number of trees sampled	Seasoning condition	Moisture content	Specific gravity based on oven dry weight and		Shrinkage(%) from green to oven dry condition based on green dimension		
					volume at test	volume at oven dry	Radial	Tangential	Volumetric
<i>Chittagong teak</i> (<i>Tectona grandis</i>)	Kaptai Chittagong Hill Tracts 40 years	3	green	155.0	0.58	0.61	-	-	5.0
			air dry	12.0	0.59				
<i>Eucalyptus tereticornis</i>	Charaljani Tangail 12 years	6	green	65.0	0.75 (129)	0.87 (143)	4.72	6.92	13.84 (277)
			air dry	12	0.82 (139)				
<i>Eucalyptus brassiana</i>	Keochia Chittagong 11 years	6	green		0.64 (110)	0.76 (125)	5.80	7.57	15.20 (304)
			air dry		0.67 (114)				
<i>Eucalyptus camaldulensis</i>	Charaljani Tangail 10 years	3	green	7.5	0.54 (93)	0.68 (111)	-	-	19.0 (380)
			air dry	13.0	0.59 (100)				

Table 2. Seasoning characteristics of three *Eucalyptus* species

Species	Drying time from green to about 12% mc (days)	Ease of drying	Drying defect	
			Difficult	Difficult
<i>E. tereticornis</i>	12 to 14	Difficult	Checks, warping twisting	
<i>E. brassiana</i>	10 to 12	Difficult	Checks, warping bending	
<i>E. camaldulensis</i>	9 to 13	Moderate	Checks, warping	

DISCUSSION

Eucalyptus tereticornis

The whitish sapwood is distinct from pale to brown heartwood. The grain is straight to shallowly interlocked. It is a high density timber with specific gravity of 0.82 in airdry condition. It exhibits volumetric shrinkage of 13.84% from green to ovendry

condition (Table 1). *E. tereticornis* is a strong timber. The most of the strength properties are found higher than those of teak wood except modulus of elasticity (MOE). *E. tereticornis* grown in Bangladesh is found superior in density and strength to those of Tamil Naidu and Uttar Pradesh of India (Tewari, 1992). It is a highly refractory timber. The kiln drying time of

2.5 cm thick sawn timber from 65% moisture content (mc) to 12% mc is 14 days following standard drying schedule (Table 2). It develops surface checks and warping during kiln seasoning. Warping and splitting of this species during seasoning are also reported by Hedricks *et al.* (1969), Hallock (1972) and Thomson (1974). The drying defects may be minimized by adopting special sawing pattern of logs, proper humidity, oriented kiln drying schedule and

top weighing of timber stack in the kiln during drying.

The species is suitable as poles for overhead power and telecommunications lines and falls under Group A according to the Bangladesh Standard specification (Anon, 1979) since its modulus of rupture (MOR) is more than 850 kg/cm². It may be used as structural timber and also for making furniture, door and windows, tool handles, etc.

Table 3. Mechanical properties of three *Eucalyptus* species (number in bracket is relative value taken teak as 100)

Species	Seasoning condition	Static bending					Compression parallel to grain	
		Stress at proportional limit kg/cm ²	Modulus of rupture kg/cm ²	Modulus of elasticity 1000 kg/cm ²	Work-in cm-kg/cm ³			Stress at proportional limit kg/cm ²
Chittagong teak (<i>Tectona grandis</i>)	green	514	867	120	0.124	0.747	1.613	288
	air dry	628	1008	131	0.170	0.622	1.225	374
<i>Eucalyptus tereticornis</i>	green	607 (118)	911 (105)	114 (95)	0.180 (145)	0.743 (99)	2.428 (150)	313 (1001)
	air dry	664 (106)	1033 (102)	123 (94)	0.201 (118)	1.216 (195)	3.118 (254)	413 (110)
<i>Eucalyptus brassiana</i>	green	443 (86)	682 (79)	87 (73)	0.129 (104)	0.656 (88)	1.398 (87)	316 (110)
	air dry	551 (88)	799 (79)	95 (73)	0.178 (105)	0.723 (116)	1.583 (129)	287 (77)
<i>Eucalyptus camaldulensis</i>	green	489 (95)	720 (83)	91 (76)	0.147 (118)	0.634 (85)	1.644 (102)	200 (69)
	air dry	525 (84)	807 (80)	9 (75)	0.156 (88)	0.671 (108)	1.620 (132)	325 (87)

Table 4. Mechanical properties of three *Eucalyptus* species (number in blanket is relative value taken teak as 100)

Species	Seasoning condition	Compression perpendicular to grain	Hardness, load required to embed a 1.13 cm ball to 1/2 its dia			Shear parallel to grain		Nail withdrawal		
		Stress at proportional limit kg/cm ²	Radial kg	Tangential kg	End kg	Radial kg/cm ²	Tangential kg/cm ²	Radial kg	Tangential kg	End kg
Chittagong teak (<i>Tectona grandis</i>)	green	67	495	518	495	86	103	145	132	95
<i>Eucalyptus tereticornis</i>	green	86	599	698	623	104	107	177	169	93
	airdry	(128) 138 (116)	(121) 843 (158)	(135) 906 (165)	(126) 1005 (189)	(121) 111 (104)	(104) 110 (96)	(122) 162 (198)	(128) 166 (226)	(98) 127 (187)
<i>Eucalyptus brassiana</i>	green	78	490	538	547	81	88	178	172	110
	airdry	(116) 101 (85)	(99) 467 (88)	(104) 542 (99)	(111) 561 (105)	(94) 114 (107)	(85) 118 (103)	(123) 150 (183) ^a	(130) 155 (201)	(116) 110 (116)
<i>Eucalyptus camaldulensis</i>	green	60	453	492	498	88	92	181	157	111
	airdry	(95) 108 (91)	(92) 463 (87)	(95) 492 (89)	(101) 592 (111)	(102) 95 (89)	(89) 105 (91)	(125) 188 (299)	(119) 212 (275)	(117) 123 (129)

Table 5. Mechanical properties of three *Eucalyptus* species (number in blanket is relative value taken teak as 100)

Species	Seasoning condition	Cleavage		Tension perpendicular to grain		Toughness		Tension parallel to grain kg/cm ²
		Radial kg of width	Tangential kg of width	Radial kg/cm ²	Tangential kg.cm ²	Radial cm - kg/specimen	Tangential cm - kg/specimen	
Chittagong teak (<i>Tectona grandis</i>)	green	68	77	44	49	387	419	
<i>Eucalyptus tereticornis</i>	airdry	66	79	41	47	321	326	
	green	49 (72)	57 (74)	44 (100)	48 (98)	420 (109)	499 (119)	1597
<i>Eucalyptus brassiana</i>	airdry	62 (94)	65 (82)	36 (88)	46 (98)	355 (111)	362	2164
	green	47 (69)	47 (96)	41 (93)	39 (80)	443 (114)	478 (114)	1358
<i>Eucalyptus camaldulensis</i>	airdry	73 (111)	76 (96)	35 (85)	44 (94)	421 (131)	452 (139)	1563
	green	53 (78)	52 (68)	45 (102)	42 (86)	358 (93)	414 (99)	1003
	airdry	56 (85)	59 (75)	46 (112)	54 (115)	302 (94)	311 (95)	1213

Eucalyptus brassiana

The sapwood is light greyish brown, gradually merging pale brown heartwood. The grain is straight to slightly interlocked and fine to medium textured. *E. brassiana* is a heavy dense timber with specific gravity of 0.67 in air dry condition (Table 1). The volumetric shrinkage of the species is higher than *E. tereticornis* though specific gravity is lower. The specific gravity is 110 to 125 percent relative to teak wood. The timber possesses moderate strength with MOR less than teak. It has a very good nail holding capacity with values 116 to 201 percent relative to teak (Table 4).

The drying time of 2.5 cm thick sawn timber is 10 to 12 days in a steam heated kiln (Table 2). Drying defects, such as surface check and warp occur during drying and thus it needs care for proper drying.

E. brassiana may be used as poles for overhead power and telecommunication lines. The species is included in Group B for pole of Bangladesh standard specification ranging bending strength of 630 to 850 kg/cm² (Anon, 1979). It has a very good uses as fuelwood having high calorific value (Davidson and Das, 1985). It may be used for construction, furniture, tool handles and other purposes requiring moderate strength.

Eucalyptus camaldulensis

Eucalyptus camaldulensis is a large bole, medium to tall tree with distinct sapwood and heartwood. The sapwood is white in colour while the heartwood is reddish brown. The wood is even and fine textured. The arrangement of grain is interlocked and wavy. It is a medium dense timber with specific gravity of 0.59 in air dry condition. The specific gravity of Bangladesh *E. camaldulensis* is found lower than that of Uttar Pradesh of India. (Tewari, 1992). It is a moderately strong timber with MOR of 807 kg/cm². The strength properties of the species are lower than those of teak in most of the cases except nail holding capacity where higher values are observed.

It is a refractory timber and develops check and warp during drying. It is reported that drying defect can be minimised if quarter sawn timber is used (Anon, 1985). The drying time of a 2.5 cm thick sawn timber in a steam heated kiln is 9 to 13 days from 75% to 12% moisture content (Table 2).

E. camaldulensis has a wide and multipurpose uses. The wood is suitable for fuelwood having high calorific value compared to some other fuelwood species grown in Bangladesh (Davidson and Das,

1985). The species is suitable for moderate grade furniture, cabinet, door and window shutter and frames, tool handles, railway sleepers, hardboard and particle board. It may be used as poles representing Group B and Bangladesh Standard Specification (Anon, 1979).

CONCLUSION

E. tereticornis is a heavy, dense and strong timber with higher values relative to teak. *E. brassiana* is a dense and moderately strong timber while *E. camaldulensis* is a moderately dense and strong timber.

Eucalyptus timber develops defects during drying. It thus has to be dried with proper care. These species are suitable for making pole, door and windows, furniture, tool handles and construction purposes.

REFERENCES

Anon. 1971. Annual book of ASTM standards, Part 16. Structural sandwich constructions : Wood, adhesives. American Society for Testing Materials. Philadelphia. 64-121.

Anon. 1979. Bangladesh standard for wood poles for over head power and telecommunication lines. BDS, 809 : 27 p.

Anon. 1985. Recent Research Achievements. Forest Research Institute & College, Dehra Dun. 32 p.

Davidson, J. and S. Das. 1985. *Eucalyptus* in Bangladesh. Bull. 6, Silviculture Division, Bangladesh Forest Research Institute, Chittagong.

Hallock, H. 1969. Sawing to reduce warp of Lodge Pole pine stands. Research Paper, Forest Products Laboratory, U.S.D.A. Forest Service No. FPL : 51-53.

Hendricks, L. T; R.D. Thompson and F.J. Hill. 1969. Proceedings-Aspen stud seminar. School of For. Univ. of Minnesota, St. Paul.

Sattar, M.A. 1980. Kiln drying schedules for indigenous timbers of Bangladesh. Bulletin 4, Wood Seasoning Series. Bangladesh Forest Research Institute, Chittagong. 11 p.

_____ and D.K. Bhattacharjee. 1990. Physical and mechanical properties of *Eucalyptus camaldulensis*. Bulletin 12, Timber Physics Series. Bangladesh Forest Research Institute. 10 p.

Thompson, R.D. 1972. Aspen-studs produced on chipping heardrig. For. Indo. 99 (5) : 60-62.

_____ 1974. The marketability of aspen studs. For. Prod. J. 24 (12) : 23-27.

Yakub, M., M.O. Ali and D.K. Bhattacharjee. 1978. Strength properties of Chittagong teak (*Tectona grandis*) representing different age groups. Bulletin 4, Timber Physics Series. Bangladesh Forest Research Institute, Chittagong. 28 p.