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ABSTRACT

Visual interpretation of satellite data, supervised classification (maximum likelihood) and a random forest
(RF) algorithm were used in the Eastern Economic Corridor (EEC), Thailand to classify land use into 5 categories:
forest; water body; agriculture; urban and built-up land; and miscellaneous land. The information was interpreted
from Landsat 9 OLI-2 data at a spatial resolution of 30 m. In addition, the GIS overlay technique was used to
compare the results of land use classification between visual interpretation and the automated analysis techniques.

Based on the results, 13,343.03 km? of the Landsat 9 OLI-2 data within the EEC could be classified, with
visual interpretation producing the highest overall accuracy (97.30%), followed by the RF algorithm (67.57%) and
then the maximum likelihood method (64.86%). The comparison revealed that 8,441.25 km? (63.26% of the EEC),
encompassing all 5 land use categories, matched with the visual interpretation results when applying the RF
algorithm and supervised classification methods via the GIS overlay technique. Thus, the RF algorithm
outperformed supervised classification in accurately classifying land use within the EEC.
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Figure 1 Area designated under Eastern Economic Corridor in eastern Thailand

NITATIUNINAN LB

nsenwaded sudunsluiuiismiaandans
YAUT UALTEEY LAYARLADNNINAILTIBY Landsat 9
Collection 2 waAnfausiuuy L1TP lWasaunquil ufiiu
Wanfilamsanang fusen Jenssteyaninaiaiion 3 nw
16l Path 128 Row 51 Path 129 Row 50 W@y Path 129
Row 51 fnualw i n1sunaauvesuad usingly
ameniienldiiusesay 30 aaniuled Earth Explorer

53

wazUfuniaunaiaad oude$ed Tnenisuuasdn DN
Tuiurmsaviounauudimdnlnfimideduusserne
(top of atmosphere, TOA) 7 v un1s1iines 7 d1fsy
dmumsiasginmanaiion wisldudadamilintu
Lﬁaqmﬂ%umimmﬂ feaun15ve9 (Ihlen, 2019; Sayler,
2022) Mntutunundeyadieisraudifiouuy False
color infrared 1 auoALETANULANA1IYBITAG UARY
Uszavlgaa



Thai Journal of Forestry 43(2): 51-61 (2024)

¢aia

o v v
nsduundayanislduselevungu

saa v

nsudananunsiduseloviidusruaien
Haurauiun sTwunUssandeyawuuliiiugua loy
nsiiudeyaninanufieudiedsuaudiiawuy False
color infrared GsuFniuiifidifivnssuunaquazdsng
Auns iiodrsenissuunldegnedaay (Khunrattanasiri,
2020) uagnan1ssuunnsliussleminauazgniaiiv
Judeyaluszuvansauneagimans fuuagduuunisld
Uselond 7 Aulaed1edaniunsusimuni du (Land
Development Department, 2012) laun

1) fudiunlet (forest land, F) Usgnaunie fiudion
5ITUYIA ﬁuﬁﬂwgﬂﬁuvj uazaIu

2) fuituna s (water body, W) Usgnausae
uwidsisssunA wavunanhfuyudaiety

3) W UF LNYAIATIY (agricultural land, A)
Usgnaume w1dn fymnsieilawns ldna fvaau a1
AlalUATYYUIBU WAZLNUATHANNATY AN519ALaLUAT
wrauwan (Judu wiow uii i dn1sldAansauly
Frunuasnssy TulUFsiuila e 35nn Uszasdiiiold
Tumanwnsnssy

0) Mufiquvuuazdsugnasna (urban and built-
up land, U) sznausae dailosuastumsnn wydou
a07ui 5193 anndauuiay g1ugnaIvnsIy @i
wnnioungoula aanu Jusiu

5 W uit i aiad e (miscellaneous land, M)
Usznousag vavg1 Yrazing nileus Auii ey
fufisn$rs vieftufiueninilearnds 1-a

p9AUsTNOUNANAIARydUsUNITWUaiAunslY
Uszlewdiidusoaeniiusngludoganimaiiien
fud aranduvosduasd aunm U919 o guuuy
ATUGILATI TiRe wazaraieaiu uenanesdUszney
nénfinamuidesiu Suduiideshdoyannamaiiieudn
3 dnwauru1UTENaUNISHANTAI Ao dnwagnsasyiau
Frandunsimanliiinvesing dnvuzgusrswesingd
Usinglunim uazdnwaznsiuasuutasuesingaiy
439381 (GISTDA, 2009)

nsduunmsliussloniidudioneuinnes
(digital analysis) ds8 8 udeainszuiunisusuniaiy
AAALAA DUYBITOLA NINALTISAA UL BNER N WAL
Ao warmnuaT U 2089 (training areas) € wdu
ﬁlw"wLﬂuﬁgamifd’wLLuﬂ%agaLLuuﬁﬂﬁ’uaLLa wazinaila
nsiFeuivonnies Tnsfiudnlunisdeniiufifedis
(GISTDA, 2009) i

54

- Fenituiidognaiidudaununislduselovd
ARunnuszianlufudidny $1eamunsuiaundifu
(Land Development Department, 2012) Wufgnfiute 1

~\Fonfiufishetevesmslddsylondiinuusdas
Ussilsinszanevhituiidne

- i@enduiugannsedleg19nsiduselewl
fifuusazdszianlidSuauninnds 30 9anmiuly
ieliddmununsadffiddnvausdunisnszasuuuuni
Fadaiulussuvasaumagimans ugunanemaes
(polygon) LUULINLABS (Vector)ﬂiaUﬂaquﬁlqﬂﬂWW‘ﬁl
ABINT

~Fenlufifet el ddnvaduazidefioatu
(homogeneous) Hiaidusatnedoyadia

1) m3sduunnisliusslovdiauwuuiiugua
(supervised classification) L{‘;Jumiﬁi’ﬁl,l,uﬂﬂizmwﬁa%aﬁ
Q"LﬁaﬂﬁyuﬁﬁnaemLﬂugﬁmumﬁﬂwmwﬁagaLLﬂ'm?aqLEN
wazidudiunidsvesnisiasgsideyan mdsgann
(pixel-based image analysis) (Ongsomwang, 2016) 1u
nMsfnwadiiidentuneuianssuunuuudanines
(parametric) 3ULUUNTTTMUNUTZLANT DY AN NI UY
muhazduldlfgean (maximum likelihood) dau3s
Alveranugndeanaziuidonmniigaudliiaalunns
fanndlefieuiuisty o dndnnmsiaude Auiw
nNWesiady AuUTUTIL warAavduiusvoseaiui
ﬁﬁm’h’ﬂumsﬁwLLuﬂsuaq%y’u%’agamﬂﬁuﬁﬁaas}’m Tnodds
fdmiunmssuunyssiandeyann fe SCP plugin &9
WusUnsaltafuainlusunsy QGIS versions 3.28
(Jensen, 1986; GISTDA, 2009; Lakshmi and Priti, 2015;
Lillesand et al., 2015; Rimal et al., 2020) ICR L
maximum likelihood n1eTuFds SCP plugin daunis
HarFudmiunisdiundeyariuiamnyAnIw Yo
Richards and Jia (2006) (aumaﬁ' 1) il

1

g, = lnp k) n|2k| ey ) Z ey (D)
dle ¢ Ao ﬂmmmmwﬂﬂquﬁmaqﬁuﬁ k

X Ao NWasIAMYBIAIELTURAAA

p(Cy) Po mmm%Lﬂuﬁ%u%agaﬁgﬂﬁaqﬁa Ck

|2k | Ao AFmesHLuudv TS NgAUEIN USRS
Joyalupaid Ce

2! o AesatuveamnIndaudunus

Vi Ao nnwesaeduddisnduvesnana k

ool x € C, < gk(x)>gj(x)Vk¢j



258157UAERS e 43(2): 51-61 (2567)

2) MsTmunnslduselevii Audaemaia
313U UaaAIILUY Random forest LHuASMsF3Y
Anuilealudagtu dneglulssinnvesiuy Non-linear
ey Supervised learning S?fdl,ﬂumizju%gaqmmwa’m
NuilregreunavUsznn i eadraduduldsadule
Wisuiaflouthdsulsidnouun Tnsusazfuiisuuuy
nsduitlddnty nguiildFuesuiuilmngeanazgniden
Tidunguitldfuanudouanndian (Sanguansat, 2019;
Dias et al., 2021; Ali et al., 2022; JavaTpoint, 2022) Tng
TAdsildlunissuundssinndoyanin fie Dzetsaka
plugin Fufugunsaliaiuiifanulnaiiu uazdauaui
Tunnsdamanany A fiUszansaim veslusunsy QGIS
versions 3.28 ﬁgﬂﬁwm'ﬁuim Nicolas Karasiak (Karasiak
and Perbet, 2018; Karasiak, 2021) & 914 nnwn Python Tu
AFINIAMIAUNTIUUNYDIIAN N Feaunsdl 2
e.g.: dict(n_estimators
=**np.arange(4,10),max _features=[5,10,20,30,40],min_sa
mples_split=range(2,6))

2)

108l n_estimators A A3 ududusenisves
Fdulilulaueafiasnaaou

np.arange Ao flarduiiazasrssenisveanen
idsaoadfiolifuunuduliifiasnnasdunsaidling

max_features fio Ansududusionisvessiuau
Anudnuazggaignlilunisgaanuddandeyaluud
azlnupvasulyd

min_samples_split fio ASududutimessiuu
shegretusisiulunsuenlaunvesdlsd

3) MInnuseeyaraNTIlATIEN (post classification
operation) ¥84N1ITIMUNUTZIANTBYARUUMIAURUAREY
38 Maximum likelihood uazn3i3suseda3eaguiuy
Random forest @sldn1snsasdoya (filtering) Memaila
wnuAanwiuandrslimieutuganmlagsou lneld
YUINANTH 5x5 AN LileARnTesganmIUIALEniT
Toyaluaanndesiuanudussilugivssme

mUszEiuaNUgnAasvamMIIuuUnUssnndaya

N1IATUINNITANTIVABUAIUYNABINIAAUIY
Taeld@uni1sA1uanians Congalton and Green (2019)
Anunlileniaf aziinaugndeavinfuiesas 85
(Anderson, 1971) WAZAINUAAIALAR BUIINNITEY
gousuldliiiudosas 10 Aszduanudesiudosay 90
(@unsft 3) lumsimungansaeaeuiilesarndinnsdiuun

55

Usstandeyanatesluuy JwihnisAmuanfisudadiu
fuilunsorUssamnsliusylonififuannisudaiimiu
Froaenuiissdoyalion uagldnisdunvudund
(stratified random sampling) Eiuf\;ﬂma‘\]ﬁauﬁﬁﬂmmiﬁ
nszaeliaseunqunslivsslovdfiauts 5 ssnnvo
A AlAvARE IUeeN

Z(p)a) .

e2

n =

Tagdl n Ao SrnugemTaoUTivINzaN

o fe Temafiaziinannugndes (@A1sgning 0-1
Fatuen p = 0.85)

q s Temafiaziinaruianain @anviadu 1-p
Farhuen q=0.15)

z o ANNTEIUN ARV 1.65)

e fia AAnuAaALAA DU ENsonTUlR LAY
$ovay 10 (Fswsuauderiu 90% fadud e = 0.1)

Usziliumnugndesvesnisduunnistdusyle
7iau Tneldm13519 Error matrix (Story and Congalton,
1986) Wnuvadun1suszifiumugndosweanisviwun
1ag 371 (overall accuracy) N15Us2LT AU NA B
Y8314 (user’s accuracy) N5UTELIUANUYNFABIVDY
{Kan (producer’s accuracy) Wagenaiauaull (Kappa
statistics) {uNsUsELdUAITIIALAAIALAE Bulneld
AraffoSursanuasandesiuvesyadoyaaosynd L
1NTTLUNLAEATS (Altman, 1991) IgNadns 1N
M1319 Error matrix 3¥ia1501508avRNad NS uAaL e
AUYNFBY NINTBEAZAUYNABIGY DBIINTTIUUN
Ussuniufiaugnifesvestoyags wasarainuaUUu
AANERNATEITRITRLA anunsauuals 6 ¥ie (Table 1)
(Landis and Koch,1977)

Table 1 Benchmarks for Kappa statistic values

Kappa Statistic Strength of Agreement

< 0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost perfect

Source: Landis and Koch (1977)
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Figure 2 Landsat 9 satellite imagery covering Eastern Economic Corridor area based on OLI-2 data recorded for
Path 128 Row 51 (128051), Path 129 Row 50 (129050) and Path 129 Row 51 (129051)
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Table 2 Results of land use classification in ECC using different classification techniques

Unit: km?

Land use class Visual interpretation Maximum likelihood Random forest
Forest 1,633.60 2,970.74 1,975.35
Water body 520.02 204.55 190.37
Agricultural 8,557.47 7,504.52 7,762.25
Urban and built-up 1,984.48 2,430.72 3,164.98
Miscellaneous 647.46 232.50 250.08
Total 13,343.03 13,343.03 13,343.03
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Az iueen (Figure 3)

Visual Interpretation Maximum likelihood Random Forest
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- Forest land Urban and built-up land
- Water body - Miscellaneous land

Figure 3 Classification maps of land use types, where visual interpretation technique (subfigure A) resulted in the

highest overall accuracy on Landsat 9 satellite data. Other techniques were (B) maximum likelihood; and

(Q) random forest algorithm
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m3Uszdiuanugniasvamsiuunussnmdaya
NSANUINYANTINARUNAALNY ALARNTIIdEU
AUYNABINIAFUINIINATTAILIUNIAY 34.71 A
wamsmuumndunadoslvidamiu dfudunulu
MInsaeUATINgNAasAauNiidulidesndn 35 0
wazasiiufinsraaeuidoudl 6-8 durau wa. 2566
suiasiiuanugndedlagldnisne Eror matrix wui
nsudafanuseaeaiaianugnieslnesiugaiiae
Amdusesay 97.30 AradAuaUUITU 0.91 s09A8UT

1¢uA madanisiFeudveaniaauuy Random forest fiein
AnugneedlagTImTeray 67.57 AataLAUUdY 0.45
warn1TLUNYIELANY By AL UUAIA U UAAI8TT
Maximum likelihood dA1A313g NABIlALIIUT DAY
64.86 AradAuAUULIAY 0.40 lagaradAuaUU1ves
n1guunnslEUselovd i dudasnouinesitsans
sUnuuiidauaenndesgefigneyluinasiviunans
Fanaanmisuladeusgmeniiiianuaenndedot
luneusigeunn (Table 3)

Table 3 Accuracy assessment of three classification methods used to distinguish land use types based on Landsat 9

image data

Classification Method Overall Accuracy (%)

Kappa Statistic Strength of Agreement

Visual interpretation 97.30
Maximum likelihood 64.86
Random forest 67.57

0.91 Almost Perfect
0.40 Fair
0.45 Moderate

31N Table 3 Han1sANWITREATANUNABILAY
smvesiufiunimunfiiawniany fusen wuii mada
33U ueleinauuy Random forest fi¥gazmnugnies
18 5IUgINIMUUMAUUAAI8I5 Maximum likelihood
dmiunisduunnisldussleniidudisnoufimes
Fagonadeaiunanisfnuives Potic and Potic (2017)
fiszy3n madlansi3euiueaa3ssuuy Random forest
a1313095797AANAT EAR 1A swInd B UF LA
Pan-European South Section of Corridor 10 Tutszine
wesiles lnelidoyaninaiiiien Sentinel-2A A3y
wsiugniign wagn1sAnwves Talukdar et al. (2020)
IevhmsAnwnsdmunmsldusslovifidusonisisous
¥84LA3 999 INTOY AN NAT oY Landsat 8 Tnold
Saneifiusianun 6 JULUU WU inAdanindsued
\A3 8aLUY Random forest fiA1AugnFadlagsaLuas
AradAuaUngsiign imngauiuuuuTansnIsdLun
mslfussleniffuarasnaquivdmiuiiufiidnatags
uaNn91n{ 113An Y1994 Loukika et al. (2021) W @nw
nsthdaneifiuvesnsiFoudveaaissdmiuiinses
nslduseloniiau delusunsy Google Earth Engine
U?Lamaq'mfw Munneru Ysginaduliie 31nTasan1m
ALTiey Landsat 8 Wag Sentinel-2 wud1 wAllAnsiTeu;
¥991A3 8IWUU Random forest 1AM1LL UL 97 4A
FamsduunUsziandeyaninaaiiien Landsat 8 e
Anugnaedlaesin Andudevas 94.85 uasdoyanin
ATieu Sentinel-2 dAAd1ugndedlaesiy Andu
Sawar 95.80
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Figure 4 Comparison of two classification methods with results of visual interpretation technique
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