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Abstract 
Butcher and Chartier in first introduced a doubly companion matrix, after that Butcher and 

Wright used doubly companion matrices as a tool to analyze numerical methods and some general 
linear methods property. Explicit formula for a determinant and an inverse formula of the doubly 
companion matrix were proved. 
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1. Introduction and Preliminaries
Let C be the field of complex numbers. 

For a positive integer n , let 
nM  be the set of 

all ×n n  matrices over C , and let ∈n nI M  be 
the identity matrix. The set of all complex 
vectors, or 1×n  matrices over C is denoted by 

nC , and let 0  be the zero vector in nC . 
Doubly companion matrices nC M∈  first intro-
duced by Butcher and Chartier (1999), given by 
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that is, a ×n n  matrix C  with 1>n  is called a 
(upper) doubly companion matrix if its entries 

ijc satisfy 1=ijc  or all entries in the submain-

diagonal of C and else 0=ijc  for 1≠i  and 

≠j n . Butcher and Wright in used the doubly 

companion matrices as a tool for analyzing 
various extension of classical methods with 
inherent Runge-Kutta stability (Butcher and 
Chartier, 1999). The doubly companion 
matrices is important for application in some 
certain matrix equations, numerical and linear 
methods. In the present paper we give an 
explicit inverse formula for the doubly 
companion matrix.

2. Determinant of a Doubly Companion
Matrix 

Let 
1

1 1 0( ) −
−= + + + +…n n

nx x a x a x aα  and 
1

1 1 0( ) −
−= + + + +…n n

nx x b x b x bβ  be two monic 
polynomials over complex numbers, we prefer 
to define the corresponding upper doubly 
companion matrix ( , )U α β  of ( )xα and ( )xβ , 
and for convenience, we denote the upper 
doubly companion matrix by : ( , )=U Uα β , that is 
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The lower doubly companion matrix is 
define by : ( , )=L L α β , that is 
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In this paper, the term doubly 
companion matrix refers to the upper doubly 
companion matrix or lower doubly companion 
matrix. 

Now, we can be written the matrix U in 
a partitioned form as
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The author presented in computed the 
characteristic polynomial of the upper doubly 
companion matrix and proved that it is a 
nonderogatory matrix, that is, its characteristic 
polynomial is equal to its minimum polynomial, 
so that, we got the determinant formula from of 
the matrix from the constant terms of the 
characteristic polynomial, since the constant 
term is ( 1)− n  times its determinant, where n  is 
the size of the matrix. However, the determi-
nant of the upper doubly companion matrix can 

direct computing as in following lemma 
(Wanicharpichat, 2011) 
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Proof. Consider the determinant of the doubly 
companion matrix 
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by interchange the first row with each succeed-
ing row until it is last, we have 
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adding the multiple of the  first row by 1−nb  to 
the last row, similarly adding the multiple of the 
second row by 2−nb  to the last row, and so on, 
we have 
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This completes the proof. 
 

3. Main Results 
In fact, the inverse of nonsingular com-

panion matrix is again in companion matrix 
form. But the inverse of the nonsingular doubly 
companion matrix is not a doubly companion 
matrix form. 
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Proof.  From Lemma 2.1, let 
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We would like to prove that 1 1 .− −= =nUU I U U  

Now, let
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where 1 2 1, , , ,−… n ne e e e  are all standard basis 

vectors in nC , and 0  is the zero vector in 
nC . From Ipsen (2009) , view 1−UU  is a block 

row vector of matrix vector product. The 
column of 1−UU are matrix vector products of U  
with column of 1−U , 
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Hence, equation (3.1) become, 
[ ]1

1 1 1 1 2 2 1 1 1 1 .                             (3.2)−
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Now consider:  
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Substituting 1 2 1, , , −… nUe Ue Ue  from above 
into equation (3.2). We have 
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From Ipsen and Ilse (2009) again, view  
1−U U   as a block column vector of matrix 

vector products, where the rows of  1−U U   are 
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From equation (3.3), we have 
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Replacing above equations in to (3.4), we have 
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This completes the proof.   
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Proof. Since the upper doubly companion 
matrix ( , )U α β similar to the lower doubly 
companion matrix ( , )L α β via the backward 
identity matrix of order ×n n  (or reversal matrix 
of order ×n n ), J ( 1−= J ) (Horn and Johnson, 
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where [ ]1 2 1− −=� " T
n np a a a , and  

[ ]1 2 1−=� … T
nq b b b . 

In particular, there are four special cases 
of the doubly companion, namely the compa-
nion matrices. Now, by Theorem 3.1 and 
Theorem 3.2 we have the well known explicit 
formulas of the inverses as in the following four 
corollaries. 
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