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Abstract 

In this paper, we investigate RG- isomorphism properties.  Moreover, the relations between the 
quotient RG-algebra and the RG-isomorphism are provided.  
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1. Introduction 

The notions of the two algebraic structures 
BCK –  algebra and BCI –  algebra were first 
introduced by Imai and Iseki ( 1966) .  BCK-
algebra is now known as a proper subclass of 
the class of BCI –  algebra.  Later, Hu and Li 
(1983) introduced the notion of BCH – algebra. 
Again, Hu and Li (1985)  considered the proper 
BCH – algebra. More recently, Jun et al. (1998) 
introduced the notion of BH – algebra which is a 
generalization of ( BCK/BCI)  –  algebras.  The 
notion of d- algebra, which is another 
generalization of BCK – algebra, were introduced 
by Neggers and Kim (1999). Furthermore, Omar 
(2014) introduced RG – algebra which is a good 
generalization of the previous algebraic 
structures and studied some of its basic 
properties and also derived some straight 
forward consequences relations between the 
RG- algebra and the abelian group which is 
related to it. Moreover, Omar (2014) studied the 

notion of the homomorphism of RG- algebra, 
called RG- homomorphism.  Patthanangkoor 
(2018) also studied some of RG-homomorphism 
properties and derived some straight forward 
consequences relations between the quotient 
RG-algebra and the RG-homomorphism. 

In this paper, we introduce the notion of 
RG-isomorphism. The purpose of this paper is 
to derive some straight forward consequences 
relations between the quotient RG-algebra and 
the RG-isomorphism and also investigate some 
of RG-isomorphism properties. 
 

2. Preliminary Results 
This section gathers together results, 

which we shall use later.  We describe the 
algebraic structure of RG-algebra and then go 
on to introduce some important results related to 
it. 

Definition 2. 1:  An algebra ( ); , 0X  of 
type (2,0)  is called RG- algebra if the following 
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axioms are satisfied ( Omar, 2014) :  For all 
, , ,x y z X  

(i) 0 ,x x =  
(ii) ( ) ( )x y x z y z =     and 
(iii) 0x y y x =  =  imply .x y=   
Proposition 2. 2:  In any RG- algebra 

( ); , 0X   (Omar, 2014), the following hold: For 
all , , ,x y z X  

(i) ( )0 ,y x x y  =   
(ii) ( )0 0 ,x x  =  
(iii) ( ) ,x x y y  =  
(iv) ( ) ( ) ,x y z y z x =     
(v) 0x y =  if and only if 0,y x =  
(vi) ( ) ( )( ) ( ) 0,x y x z z y     =  
(vii) 0,x x =  
(viii) 0 0x =  implies 0.x =  
Proposition 2. 3:  In any RG- algebra 

( ); , 0X  (Omar, 2014) , the following hold:  For 
all , , ,x y z X  

(i) ( ) ( ) ( )( )0 0 ,x y y x y y x   =    =  
(ii) ( )( ) ,x x x y x y   =   
(iii) ( ) ( ) ( ) ( )( )0x y z x y z y y  =       

( )( ) ( )x z z y z=      
      ( )( ) ( )x y y z y=      

( ) .x z y=    
Definition 2. 4:  Let ( ); , 0X   be an RG-

algebra.  A nonempty subset A  of X  is called 
an RG- sub algebra of X  if ( ); , 0A   is itself an 
RG-algebra. 

Definition 2.5:  Let ( ); , 0X   be an RG-
algebra (Omar, 2014). A nonempty subset A  of 
X  is called an ideal or RG-ideal of X  if: 

(i) 0 A  and 
(ii)  x y A   and 0 x A   imply 0 y A    

for all , .x y X  
Remark:  If ( ); , 0X   is an RG-algebra, 

then  0  and X are  RG-ideals of .X  
Definition 2.6:  Let ( ); , 0X   be an RG-

algebra and A  be an RG- ideal of X ( Omar, 
2014). The relation   on X  defined by x y  if 
and only if x y A   and y x A   for all 

,x y X  is called the relation defined by the 
ideal .A  

Remark:  It is clear that   is an 
equivalence relation on .X  

Proposition 2. 7:  Let ( ); , 0X   be an 
RG-algebra. If A  is an RG- ideal of X  (Omar, 
2014), then A  is an RG-sub algebra of .X  

Theorem 2.8:  Let A  be an RG- ideal of 
an RG- algebra ( ); , 0X   ( Omar, 2014) .  If 
x y A   and ,x A  then y A  for all 
, ,x y X  where   is the relation defined by 

the ideal .A  
Recall that if   is the relation on the non 

empty- set ,X  then   is called a congruence 
on X  if and only if ( i)    is an equivalence 
relation on X  and ( ii)  x y  and u v  imply 
( ) ( )xu yv  for all , , , .x y u v X  

Theorem 2. 9:  Let ( ); , 0X   be an RG-
algebra and A  be an RG- ideal of X  ( Omar, 
2014) .  If   is the relation defined by the ideal 

,A  then   is a congruence on .X  
Since   is an equivalence relation on 

( ); , 0 ,X   for all ,x X  the equivalence class 
of x  is  

x
C y X x y=   and the family 

 
x

C x X  form a partition of X  which is 
denoted by |X  .  We define the operation •  
on X   by 

x y x y
C C C


• =  for all , .x y X  It is 
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easy to verify that •  is well– defined on X   
and ( )

0
; ,X C •  satisfies axioms (i) and (ii) but 

not ( iii)  of Definition 2. 1 of RG-algebra.  If the 
axiom holds for all the classes | ,

x
C X   that 

is if the system ( )
0

; ,X C •  is an RG-algebra, 
then the congruence   is called regular. 

Theorem 2.10: Let ( ); , 0X   be an RG-
algebra and   be a congruence on X  (Omar, 
2014) .  Then,  

0
0C x X x=   is an RG-

ideal of .X  
Corollary 2.11: Let ( ); , 0X   be an RG-

algebra (Omar, 2014). Then, any RG-ideal in X  
can be determined by some congruence. 

Theorem 2.12: A congruence on an RG-
algebra X  is regular if and only if it is defined 
by some RG-ideal (Omar, 2014). 

Corollary 2. 13:  All congruences of a 
finite RG-algebra are regular and the theory of 
universal algebra yields (Omar, 2014). 

Definition 2. 14:  Let ( ); , 0X   and 
( ); , 0Y   be two RG-algebras (Omar, 2014). A 
mapping :f X Y→  is called an RG-
hommorphism if ( ) ( ) ( )f x y f x f y =   for 
all ,x y X and is called an RG-
antihommorphism if ( )f x y ( ) ( )f y f x=   
for all ,x y X .  If f  is an RG-hommorphism 
or RG- antihommorphism, then ker f =

( ) 0 .x X f x  =  
Example 2. 15:  Let  0, , ,X a b c=  and 

  be a binary operation on X  defined by 

  0  a  b  c  
0  0  a  b  c  
a  a  0  c  b  
b  b  c  0  a  
c  c  b  a  0  

Then, ( ); , 0X   is an RG-algebra.  Let 
( ) ( ): ; , 0 ; , 0f X X →   be a mapping defined 

by ( )f x x x=   for all .x X  Thus, f  is an 
RG-hommorphism and ( ) ker 0f x X f x=  =

 0x X x x=   =  0, , , .a b c X= =  
Definition 2.16: Let ( ); , 0X   be an RG-

algebra.  A non empty-subset I  of X  is called 
a closed set of X  if a b I   for all , .a b I  

Definition 2. 17:  Let :f X Y→ be an 
RG- hommorphism, where ( ); , 0X   and 
( ); , 0Y    are RG-algebras and let I X    
and .A Y    The image of I  in X under f  
is ( ) ( ) f I f x x I=   and the inverse 
image of A  in Y  is ( ) ( ) 1

.f A x X f x A
−

=    
Theorem 2. 18:  Let :f X Y→  be an 

RG- homomorphism, where ( ); , 0X   and 
( ); , 0Y    are RG- algebras ( Patthanangkoor, 
2018). Then, 

(i) ( )0 0 .f =  
(ii) If 0 x x =  for all ,x X  then ( )0f y

y=  for all ( )y f X . 
(iii) ker f  is an RG-ideal of .X  
(iv) ker f  is an RG-sub algebra of .X  
(v) ker f  is a closed set of .X  
( vi)   ker 0f =  if and only if f  is an 

injective. 
(vii) If 0x y = , then ( ) ( ) 0f x f y  = , 

where , .x y X  
Theorem 2. 19:  Let :f X Y→  be an 

RG- antihomomorphism, where ( ); , 0X   and 
( ); , 0Y    are RG- algebras ( Patthanangkoor, 
2018). Then,  

(i) ( )0 0 .f =  
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(ii) ( )0f y y =  for all ( ).y f X  
(iii) ker f  is an RG-ideal of .X  
(iv) ker f  is an RG-sub algebra of .X  
(v) ker f  is a closed set of .X  
( vi)   ker 0f =  if and only if f  is an 

injective. 
(vii) If 0x y = , then ( ) ( ) 0f y f x  = , 

where , .x y X  
Theorem 2. 20:  Let :f X Y→  be an 

RG- homomorphism, where ( ); , 0X   and 
( ); , 0Y    are RG- algebras ( Patthanangkoor, 
2018). Then, 

(i) If I  is a closed set of ,X  then ( )f I  
is a closed set of .Y  

(ii) If I  is an RG-ideal of ,X  then ( )f I  
is an RG-ideal of .Y  

(iii) If f  is an injective and I  is an RG-
sub algebra of ,X  then ( )f I  is an RG- sub 
algebra of .Y  

(iv) If A  is a closed set of ,Y  then 1
( )f A

−  
is a closed set of .X  

(v) If A  is an RG-ideal of ,Y  then 1
( )f A

−  
is an RG-ideal of .X  

( vi)  Im f  is a closed set of ,Y  where 
1

Im ( ) { ( ) }.f f X f x x X
−

= =   
Recall that if ( ; , 0)X   is a finite RG-

algebra and   is a congruence on ,X  by 
Corollary 2. 13, then   is a regular and, using 
Theorem 2. 12,   is the relation defined by ,A  
where A  is an RG– ideal of .X  It implies that 

0
( ; , )X C •  is an RG-algebra and

0
A C= .  

Definition 2. 21:  Let ( ; , 0)X   be a finite 
RG- algebra,   be a congruence on ,X  and,  
for all ,x X   

x
C y X x y=   be the 

equivalence class of .x  Then, the family 
 |

x
X C x X =   form a partition of X  and 

0
( ; , )X C •  is an RG- algebra, where the 
operation •  on X   is defined as:  

x y x y
C C C


• =  for all , .x y X  

0
( ; , )X C •  is 

called the quotient RG-algebra. 
Theorem 2. 22:  Let ( ; , 0)X   be a finite 

RG-algebra, A  be a closed RG-ideal of X and 
   be the relation defined by A  (Patthanang-
koor, 2018) .  If : |f X X →  is the map 
defined by ( )

x
f x C=  for all ,x X  then f  is 

a surjective RG-homomorphism, we call f  is 
the natural RG-homomorphism, and ker f A= . 

Theorem 2. 23:  (Patthanangkoor, 2018) 
Suppose that ( ; , 0)X   is a finite RG- algebra. 
Let :f X Y→  be a surjective RG-
homomorphism, A  be an RG- ideal of X

contained in ker f  and    be the relation 
defined by .A  If g  is the natural RG-
homomorphism of X  onto | ,X   then there 
exists a unique RG-homomorphism h  of |X   
onto Y  such that .f h g=  Furthermore, h  is 
an injective if and only if ker .A f=  
 

3. Main Results 
We maintain the notation introduced in 

Section 2.  Throughout, we let ( ); , 0X   and 
( ); , 0Y   be two RG-algebras.  The aim of this 
section is to describe the properties of RG-
isomorphism.   

Definition 3.1: An injective RG-
homomorphism is called a RG- monomorphism. 
A surjective RG-homomorphism is called an RG-
epimorphism. An RG-isomorphism is a bijective 
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RG-homomorphism.  Two RG-algebras X  and 
Y  are isomorphic when there exists an RG-
isomorphism from X  onto ,Y  this relationship 
is denoted by .X Y  

Theorem 3. 2:  :f X Y→ is an RG-
isomorphism if and only if 1

:f Y X
−

→  is an 
RG-isomorphism. 

Proof:   Suppose that :f X Y→  is an 
RG-isomorphism. Then, f  is a bijection. Thus, 

1
:f Y X

−
→  is also a bijection.  Let 

1 2
, .y y Y  

Then, ( )
1 1

y f x=  and ( )
2 2

y f x=  for some 

1 2
, .x x X  That is, ( )1

1 1
x f y

−
=  and 

( )1

2 2
.x f y

−
=  Therefore,  

( ) ( ) ( )( )1 1

1 2 1 2
f y y f f x f x
− −  =   

( )( )1

1 2
f f x x
−

=   

( )( )1

1 2
f f x x

−
=   

1 2
x x=   

( ) ( )1 1

1 2
,f y f y

− −
=   

and then 1
:f Y X

−
→  is an RG-

homomorphism.  Thus, 1
:f Y X

−
→  is an RG-

isomorphism.  
Conversely, if 1

:f Y X
−

→  is an RG-
isomorphism then 1

f
−  is a bijection.  Thus, 

:f X Y→  is also a bijection.  Let 
1 2
, .x x X  

Then, ( )1

1 1
x f y

−
=  and ( )1

2 2
x f y

−
=  for 

some 
1 2
, .y y Y  Hence, ( )

1 1
f x y=  and 

( )
2 2

.f x y=  It follows that  
( ) ( ) ( )( )1 1

1 2 1 2
f x x f f y f y

− −
 =   

( )( )1

1 2
f f y y

− =   

( )( )1

1 2
f f y y
− =   

1 2
y y=   
( ) ( )

1 2
.f x f x=   

Therefore, :f X Y→  is an RG-homomor- 

phism and hence :f X Y→  is an RG-isomorphism.                       

 

Remark:  If :f X Y→  is an RG-
homomorphism, by Theorem 2.20, we have that 

( )f X  is an RG- ideal of .Y  It follows by 
Proposition 2. 7 that ( )f X  is an RG- sub 
algebra of .Y  

Theorem 3. 2:  Let ( ; , 0)X   and 
( ); , 0Y    be finite RG-algebras. If :f X Y→ is 
an RG- homomorphism and   is the relation 
defined by ker ,f  then the quotient RG-algebra 
X   is isomorphic to ( ).f X  

Proof:   Suppose that :f X Y→ is an 
RG- homomorphism and   is the relation 
defined by ker .f  By Theorem 2.18 (3) , ker f  
is an RG- ideal of .X  By Theorem 2.9,   is a 
congruence on .X  Using Corollary 2.13,   is a 
regular.  It implies that 

0
( ; , )X C •  is an RG-

algebra. Let kerK f= . 
Assume that : ( )X f X  →  defined 

by ( ) ( )
x

C f x =  for all .
x

C X   Let 
,

x y
C C X   be such that .

x y
C C=  Then, 

.x y  It follows that x y K   and .y x K   
Thus, ( ) ( ) ( ) ( ) 0 .f x f y f y f x   =  =  It implies 
that ( ) ( ),f x f y=  that is, ( ) ( ).

x y
C C =  Hence, 

  is well-defined. Let , .
x y

C C X   Therefore, 

we get ( ) ( ) ( )
x y x y

C C C f x y 


• = =  =

( ) ( )f x f y = ( ) ( ).
x y

C C   This show that 
  is an RG-homomorphism.  

Let ,
x y

C C X   be such that ( )
x

C =

( ).
y

C  Then, ( ) ( )f x f y=  and hence, ( )f x y =

( ) ( )f x f y 0=  and ( )f y x = ( ) ( )f y f x

0 .=  Thus, kerx y f K  =  and ker .y x f K  =  
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We have that x y  and thus, .
x y

C C=  Hence, 
  is an injection.  Let ( ).y f X  Then, there 
exists x X  such that ( )y f x=  and .

x
C X   

Therefore, ( ) ( )
x

C f x y = =  and   is a 
surjection. Hence,   is an RG-isomorphism and 

( ).X f X                                                           

Lemma 3.3: Let A  and B be RG-ideals 
of an RG-algebra .X  Then, 

(i) A B  is an RG-ideal of X .  
(ii) If A B  is an RG-algebra, then A  is 

an RG-ideal of .A B  
Proof:   Suppose that A  and B are RG-

ideals of an RG-algebra .X   
( i) Since 0 A  and 0 ,B   0 A B   

and then, .A B   Let ,x y X  be such 
that x y A B    and 0 .x A B    Thus, 

, 0x y x A    and , 0x y x B   .  It follows 
that 0 y A   and 0 .y B   Thus, 0 y A B    
and hence, A B  is an RG-ideal of .X  

(ii) Suppose that A B  is an RG-algebra. 
Let ,x y A B   be such that x y A   and 
0 .x A   Since ,A B X   , .x y X  
Therefore, 0 y A   and we get that A  is an 

RG-ideal of .A B                               

Remark: Suppose that A  and B are 
finite RG-ideals of an RG-algebra ( ; , 0)X   and 
A B  is an RG-algebra. Let   be the relation 
defined by A B  and   be the relation 
defined by .B  Therefore, 

0
( ; , )A C •  is the 

quotient RG-algebra and 
0

A B C = =

{ 0}a A a =  { 0, 0 }a A a a A B     . 
Similarly, since   be the relation defined by ,B  

0
(( ) ; , )A B C •  is the quotient RG-algebra 
and 

0
B C= =  { 0 }.x A B x   

Theorem 3. 4:  Let A  and B  be RG-
ideals of a finite RG-algebra .X  If A B  is an 
RG- algebra, then the quotient RG- algebras 
A   and ( )A B   are isomorphic, where   
is the relation defined by A B  and   is the 
relation defined by .B  

Proof: Suppose that A  and B  are RG-
ideals of a finite RG-algebra .X  and A B  is 
an RG-algebra.  By Lemma 3. 3, B  is an RG-
ideal of A B  Let : ( ) ,f A A B →   where 
  is the relation defined by ,B  be a map 
defined by ( )

a
f a C=  for all a A , where 

{ }
a

C y A B a y=   .  Let ,a b A  be such 
that .a b=  Then, ,

a b
C C=  it follows that 

( ) ( ).f a f b=  Thus, f  is well- defined.  Let 
( ) .

x
C A B    Then, .x A B   If ,x A  
then ( ).

x
C f x=  If ,x B  then 

0
x C  and 

hence,
0

(0).
x

C C f= =  Therefore, f  is a 
surjection, that is, ( ) ( ) .f A A B =   

Let , .a b A  Since ( )
a b a b

f a b C C C


 = = •

( ) ( ),f a f b= •  we then have f  is an RG-
homomorphism.  Now, let ker .x f  Then, 

( )f x =
0

C  and thus, 
0
.

x
C C=  It implies that 

0
x C B =  and then, ker .f B  Since 
ker ,f A  ker .f A B   On the other hand, 
let .x A B   Then, 

0
.x B C =  It follows that 

0
( ) ,

x
f x C C= =  and we get that ker .x f  

Therefore, ker .f A B=   By Theorem 2. 18, 
A B  is an RG- ideal of .A  Theorem 3. 2 
immediately gives us that A   is isomorphic to 

( ) ( ) ,f A A B =   where   is the relation 

defined by ker .f A B=                                     

Theorem 3. 5:  Suppose that A  and B

are RG- ideals of a finite RG-algebra ( ; , 0)X   
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with .A B X   Let   be the relation defined 
by .A  Then, 

(1) the quotient RG-algebra B   is an 

RG-ideal of the quotient RG-algebra ,X   and 

(2) the quotient RG-algebra ( )X    is 

isomorphic to ,X   where   is the relation 

defined by B   and   is the relation defined 
by .B              

Proof:  Suppose that A  and B  are RG-
ideals of a finite RG- algebra X  such that 

.A B X   Let   be the relation defined by A   
( i)  It is clear that { }

b
B C b B =  

{ }
b

C b X X  =  and 
0

.C B   Let 
,

x y
C C X   be such that C

x y
C B •   and 

0
C .

x
C B •   Then, 

x y
C B 


  and 

0
.

x
C B 


  It follows that x y B   and 

0 .x B   Since B  is an RG- ideals of ,X  
0 .y B   That is, 

0 y
C B 


  or 

0
C .

y
C B •   

Therefore, B   is an RG-ideal of .X   
( ii)  Suppose that   is the relation 

defined by .B  Let :f X X →  be a map 
defined by ( )

x x
f C C =  for all ,x X  where 

 
x

C y X x y =   is  the equivalence class of 
.x X  Let ,

x y
C C X   be such that .

x y
C C=  

Then, ,x y  that is x y A   and .y x A   
Since ,A B  x y B   and y x B   Thus, 
x y  and so .

x y
C C =  It implies that ( )

x
f C =

( )
y

f C  and hence, f  is well-defined.  Next, let 
.

x
C X    We see that .x X  If ,x B  then 

0
x C   and 

0 0
( ).

x
C C f C = =  If ,x B  then 

there exists
x

C X   such that ( ) .
x x

f C C =  
Therefore, f  is onto. Since, for all , ,

x y
C C X   

( ) ( )
x y x y

f C C f C


• = =
x y x y

C C C

  = • ( )

x
f C=  

( )
y

f C• . Hence, f  is a RG-homomorphism. 
Finally, we show that ker .f B =  Let 

ker .
x

C f  Then, 
0

( ) ,
x

f C C =  that is 

0
.

x
C C B = =  Thus, x B  and we have 

.
x

C B   Therefore, ker .f B   On the 
other hand, we let .

x
C B   Then, 

0
x B C  =  

and we get 
0

( ) .
x x

f C C C = =  Thus, ker
x

C f  
and hence, ker .B f   Consequently, 
ker .f B =  By Theorem 3. 2, ( )X    is 
isomorphic to ( ) ,f X X =  where   is the 

relation defined by ker .f B =                         
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