

RG-Isomorphism and Its Properties

Poonchayar Patthanangkoor*

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University,

Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani 12120

Received: June 3, 2018; Accepted: November 16, 2018

Abstract

In this paper, we investigate RG-isomorphism properties. Moreover, the relations between the quotient RG-algebra and the RG-isomorphism are provided.

Keywords: RG-algebra; RG-homomorphism; RG-isomorphism; RG-ideal

1. Introduction

The notions of the two algebraic structures BCK – algebra and BCI – algebra were first introduced by Imai and Iseki (1966). BCK-algebra is now known as a proper subclass of the class of BCI – algebra. Later, Hu and Li (1983) introduced the notion of BCH – algebra. Again, Hu and Li (1985) considered the proper BCH – algebra. More recently, Jun *et al.* (1998) introduced the notion of BH – algebra which is a generalization of (BCK/BCI) – algebras. The notion of d- algebra, which is another generalization of BCK – algebra, were introduced by Neggers and Kim (1999). Furthermore, Omar (2014) introduced RG – algebra which is a good generalization of the previous algebraic structures and studied some of its basic properties and also derived some straight forward consequences relations between the RG-algebra and the abelian group which is related to it. Moreover, Omar (2014) studied the

notion of the homomorphism of RG- algebra, called RG- homomorphism. Patthanangkoor (2018) also studied some of RG-homomorphism properties and derived some straight forward consequences relations between the quotient RG-algebra and the RG-homomorphism.

In this paper, we introduce the notion of RG-isomorphism. The purpose of this paper is to derive some straight forward consequences relations between the quotient RG-algebra and the RG-isomorphism and also investigate some of RG-isomorphism properties.

2. Preliminary Results

This section gathers together results, which we shall use later. We describe the algebraic structure of RG-algebra and then go on to introduce some important results related to it.

Definition 2.1: An algebra $(X; *, 0)$ of type $(2,0)$ is called *RG-algebra* if the following

axioms are satisfied (Omar, 2014): For all $x, y, z \in X$,

- (i) $x * 0 = x$,
- (ii) $x * y = (x * z) * (y * z)$ and
- (iii) $x * y = y * x = 0$ imply $x = y$.

Proposition 2.2: In any RG-algebra $(X; *, 0)$ (Omar, 2014), the following hold: For all $x, y, z \in X$,

- (i) $0 * (y * x) = x * y$,
- (ii) $0 * (0 * x) = x$,
- (iii) $x * (x * y) = y$,
- (iv) $x * y = (z * y) * (z * x)$,
- (v) $x * y = 0$ if and only if $y * x = 0$,
- (vi) $((x * y) * (x * z)) * (z * y) = 0$,
- (vii) $x * x = 0$,
- (viii) $x * 0 = 0$ implies $x = 0$.

Proposition 2.3: In any RG-algebra $(X; *, 0)$ (Omar, 2014), the following hold: For all $x, y, z \in X$,

- (i) $(x * y) * (0 * y) = (x * (0 * y)) * y = x$,
- (ii) $x * (x * (x * y)) = x * y$,
- (iii) $(x * y) * z = (x * y) * ((z * y) * (0 * y))$
 $= ((x * z) * z) * (y * z)$
 $= ((x * y) * y) * (z * y)$
 $= (x * z) * y$.

Definition 2.4: Let $(X; *, 0)$ be an RG-algebra. A nonempty subset A of X is called an *RG-sub algebra* of X if $(A; *, 0)$ is itself an RG-algebra.

Definition 2.5: Let $(X; *, 0)$ be an RG-algebra (Omar, 2014). A nonempty subset A of X is called an *ideal* or *RG-ideal* of X if:

- (i) $0 \in A$ and
- (ii) $x * y \in A$ and $0 * x \in A$ imply $0 * y \in A$

for all $x, y \in X$.

Remark: If $(X; *, 0)$ is an RG-algebra, then $\{0\}$ and X are RG-ideals of X .

Definition 2.6: Let $(X; *, 0)$ be an RG-algebra and A be an RG-ideal of X (Omar, 2014). The relation θ on X defined by $x\theta y$ if and only if $x * y \in A$ and $y * x \in A$ for all $x, y \in X$ is called *the relation defined by the ideal A*.

Remark: It is clear that θ is an equivalence relation on X .

Proposition 2.7: Let $(X; *, 0)$ be an RG-algebra. If A is an RG-ideal of X (Omar, 2014), then A is an RG-sub algebra of X .

Theorem 2.8: Let A be an RG-ideal of an RG-algebra $(X; *, 0)$ (Omar, 2014). If $x\theta y \in A$ and $x \in A$, then $y \in A$ for all $x, y \in X$, where θ is the relation defined by the ideal A .

Recall that if θ is the relation on the non empty-set X , then θ is called a *congruence* on X if and only if (i) θ is an equivalence relation on X and (ii) $x\theta y$ and $u\theta v$ imply $(xu)\theta(yv)$ for all $x, y, u, v \in X$.

Theorem 2.9: Let $(X; *, 0)$ be an RG-algebra and A be an RG-ideal of X (Omar, 2014). If θ is the relation defined by the ideal A , then θ is a congruence on X .

Since θ is an equivalence relation on $(X; *, 0)$, for all $x \in X$, the equivalence class of x is $C_x = \{y \in X \mid x\theta y\}$ and the family $\{C_x \mid x \in X\}$ form a partition of X which is denoted by $X \mid \theta$. We define the operation \bullet on $X \mid \theta$ by $C_x \bullet C_y = C_{x * y}$ for all $x, y \in X$. It is

easy to verify that \bullet is well-defined on $X|\theta$ and $(X|\theta; \bullet, C_0)$ satisfies axioms (i) and (ii) but not (iii) of Definition 2.1 of RG-algebra. If the axiom holds for all the classes $C_x \in X|\theta$, that is if the system $(X|\theta; \bullet, C_0)$ is an RG-algebra, then the congruence θ is called *regular*.

Theorem 2.10: Let $(X; *, 0)$ be an RG-algebra and θ be a congruence on X (Omar, 2014). Then, $C_0 = \{x \in X \mid 0\theta x\}$ is an RG-ideal of X .

Corollary 2.11: Let $(X; *, 0)$ be an RG-algebra (Omar, 2014). Then, any RG-ideal in X can be determined by some congruence.

Theorem 2.12: A congruence on an RG-algebra X is regular if and only if it is defined by some RG-ideal (Omar, 2014).

Corollary 2.13: All congruences of a finite RG-algebra are regular and the theory of universal algebra yields (Omar, 2014).

Definition 2.14: Let $(X; *, 0)$ and $(Y; *, 0')$ be two RG-algebras (Omar, 2014). A mapping $f: X \rightarrow Y$ is called an *RG-homomorphism* if $f(x * y) = f(x) *' f(y)$ for all $x, y \in X$ and is called an *RG-antihomomorphism* if $f(x * y) = f(y) *' f(x)$ for all $x, y \in X$. If f is an RG-homomorphism or RG- antihomomorphism, then $\ker f = \{x \in X \mid f(x) = 0'\}$.

Example 2.15: Let $X = \{0, a, b, c\}$ and $*$ be a binary operation on X defined by

*	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Then, $(X; *, 0)$ is an RG-algebra. Let $f: (X; *, 0) \rightarrow (X; *, 0)$ be a mapping defined by $f(x) = x * x$ for all $x \in X$. Thus, f is an RG-homomorphism and $\ker f = \{x \in X \mid f(x) = 0\} = \{x \in X \mid x * x = 0\} = \{0, a, b, c\} = X$.

Definition 2.16: Let $(X; *, 0)$ be an RG-algebra. A non empty-subset I of X is called a *closed set* of X if $a * b \in I$ for all $a, b \in I$.

Definition 2.17: Let $f: X \rightarrow Y$ be an RG- homomorphism, where $(X; *, 0)$ and $(Y; *, 0')$ are RG-algebras and let $\emptyset \neq I \subseteq X$ and $\emptyset \neq A \subseteq Y$. The *image of I in X under f* is $f(I) = \{f(x) \mid x \in I\}$ and the *inverse image of A in Y* is $f^{-1}(A) = \{x \in X \mid f(x) \in A\}$.

Theorem 2.18: Let $f: X \rightarrow Y$ be an RG- homomorphism, where $(X; *, 0)$ and $(Y; *, 0')$ are RG- algebras (Patthanangkoor, 2018). Then,

$$(i) f(0) = 0'.$$

(ii) If $0 * x = x$ for all $x \in X$, then $f(0) *' y = y$ for all $y \in f(X)$.

(iii) $\ker f$ is an RG-ideal of X .

(iv) $\ker f$ is an RG-sub algebra of X .

(v) $\ker f$ is a closed set of X .

(vi) $\ker f = \{0\}$ if and only if f is an injective.

(vii) If $x * y = 0$, then $f(x) *' f(y) = 0'$, where $x, y \in X$.

Theorem 2.19: Let $f: X \rightarrow Y$ be an RG- antihomomorphism, where $(X; *, 0)$ and $(Y; *, 0')$ are RG- algebras (Patthanangkoor, 2018). Then,

$$(i) f(0) = 0'.$$

- (ii) $f(0)*' y = y$ for all $y \in f(X)$.
- (iii) $\ker f$ is an RG-ideal of X .
- (iv) $\ker f$ is an RG-sub algebra of X .
- (v) $\ker f$ is a closed set of X .
- (vi) $\ker f = \{0\}$ if and only if f is an injective.
- (vii) If $x * y = 0$, then $f(y)*' f(x) = 0'$, where $x, y \in X$.

Theorem 2.20: Let $f : X \rightarrow Y$ be an RG-homomorphism, where $(X; *, 0)$ and $(Y; *', 0')$ are RG-algebras (Patthanangkoor, 2018). Then,

- (i) If I is a closed set of X , then $f(I)$ is a closed set of Y .
- (ii) If I is an RG-ideal of X , then $f(I)$ is an RG-ideal of Y .
- (iii) If f is an injective and I is an RG-sub algebra of X , then $f(I)$ is an RG-sub algebra of Y .
- (iv) If A is a closed set of Y , then $f^{-1}(A)$ is a closed set of X .
- (v) If A is an RG-ideal of Y , then $f^{-1}(A)$ is an RG-ideal of X .
- (vi) $\text{Im } f$ is a closed set of Y , where $\text{Im } f = f^{-1}(X) = \{f(x) \mid x \in X\}$.

Recall that if $(X; *, 0)$ is a finite RG-algebra and θ is a congruence on X , by Corollary 2.13, then θ is a regular and, using Theorem 2.12, θ is the relation defined by A , where A is an RG-ideal of X . It implies that $(X \mid \theta; \bullet, C_0)$ is an RG-algebra and $A = C_0$.

Definition 2.21: Let $(X; *, 0)$ be a finite RG-algebra, θ be a congruence on X , and, for all $x \in X$, $C_x = \{y \in X \mid x\theta y\}$ be the

equivalence class of x . Then, the family $X \mid \theta = \{C_x \mid x \in X\}$ form a partition of X and $(X \mid \theta; \bullet, C_0)$ is an RG-algebra, where the operation \bullet on $X \mid \theta$ is defined as: $C_x \bullet C_y = C_{x * y}$ for all $x, y \in X$. $(X \mid \theta; \bullet, C_0)$ is called the *quotient RG-algebra*.

Theorem 2.22: Let $(X; *, 0)$ be a finite RG-algebra, A be a closed RG-ideal of X and θ be the relation defined by A (Patthanangkoor, 2018). If $f : X \rightarrow X \mid \theta$ is the map defined by $f(x) = C_x$ for all $x \in X$, then f is a surjective RG-homomorphism, we call f is the *natural RG-homomorphism*, and $\ker f = A$.

Theorem 2.23: (Patthanangkoor, 2018) Suppose that $(X; *, 0)$ is a finite RG-algebra. Let $f : X \rightarrow Y$ be a surjective RG-homomorphism, A be an RG-ideal of X contained in $\ker f$ and θ be the relation defined by A . If g is the natural RG-homomorphism of X onto $X \mid \theta$, then there exists a unique RG-homomorphism h of $X \mid \theta$ onto Y such that $f = h \circ g$. Furthermore, h is an injective if and only if $A = \ker f$.

3. Main Results

We maintain the notation introduced in Section 2. Throughout, we let $(X; *, 0)$ and $(Y; *', 0')$ be two RG-algebras. The aim of this section is to describe the properties of RG-isomorphism.

Definition 3.1: An injective RG-homomorphism is called a *RG-monomorphism*. A surjective RG-homomorphism is called an *RG-epimorphism*. An *RG-isomorphism* is a bijective

RG-homomorphism. Two RG-algebras X and Y are *isomorphic* when there exists an RG-isomorphism from X onto Y , this relationship is denoted by $X \cong Y$.

Theorem 3.2: $f : X \rightarrow Y$ is an RG-isomorphism if and only if $f^{-1} : Y \rightarrow X$ is an RG-isomorphism.

Proof. Suppose that $f : X \rightarrow Y$ is an RG-isomorphism. Then, f is a bijection. Thus, $f^{-1} : Y \rightarrow X$ is also a bijection. Let $y_1, y_2 \in Y$. Then, $y_1 = f(x_1)$ and $y_2 = f(x_2)$ for some $x_1, x_2 \in X$. That is, $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Therefore,

$$\begin{aligned} f^{-1}(y_1 *' y_2) &= f^{-1}(f(x_1) *' f(x_2)) \\ &= f^{-1}(f(x_1 * x_2)) \\ &= (f \circ f^{-1})(x_1 * x_2) \\ &= x_1 * x_2 \\ &= f^{-1}(y_1) * f^{-1}(y_2), \end{aligned}$$

and then $f^{-1} : Y \rightarrow X$ is an RG-homomorphism. Thus, $f^{-1} : Y \rightarrow X$ is an RG-isomorphism.

Conversely, if $f^{-1} : Y \rightarrow X$ is an RG-isomorphism then f^{-1} is a bijection. Thus, $f : X \rightarrow Y$ is also a bijection. Let $x_1, x_2 \in X$. Then, $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$ for some $y_1, y_2 \in Y$. Hence, $f(x_1) = y_1$ and $f(x_2) = y_2$. It follows that

$$\begin{aligned} f(x_1 * x_2) &= f(f^{-1}(y_1) * f^{-1}(y_2)) \\ &= f(f^{-1}(y_1 *' y_2)) \\ &= (f^{-1} \circ f)(y_1 *' y_2) \\ &= y_1 *' y_2 \\ &= f(x_1) *' f(x_2). \end{aligned}$$

Therefore, $f : X \rightarrow Y$ is an RG-homomor-

phism and hence $f : X \rightarrow Y$ is an RG-isomorphism.

□

Remark: If $f : X \rightarrow Y$ is an RG-homomorphism, by Theorem 2.20, we have that $f(X)$ is an RG-ideal of Y . It follows by Proposition 2.7 that $f(X)$ is an RG-subalgebra of Y .

Theorem 3.2: Let $(X; *, 0)$ and $(Y; *, 0')$ be finite RG-algebras. If $f : X \rightarrow Y$ is an RG-homomorphism and θ is the relation defined by $\ker f$, then the quotient RG-algebra $X | \theta$ is isomorphic to $f(X)$.

Proof. Suppose that $f : X \rightarrow Y$ is an RG-homomorphism and θ is the relation defined by $\ker f$. By Theorem 2.18 (3), $\ker f$ is an RG-ideal of X . By Theorem 2.9, θ is a congruence on X . Using Corollary 2.13, θ is a regular. It implies that $(X | \theta; \bullet, C_0)$ is an RG-algebra. Let $K = \ker f$.

Assume that $\phi : X | \theta \rightarrow f(X)$ defined by $\phi(C_x) = f(x)$ for all $C_x \in X | \theta$. Let $C_x, C_y \in X | \theta$ be such that $C_x = C_y$. Then, $x \theta y$. It follows that $x * y \in K$ and $y * x \in K$. Thus, $f(x) *' f(y) = f(y) *' f(x) = 0'$. It implies that $f(x) = f(y)$, that is, $\phi(C_x) = \phi(C_y)$. Hence, ϕ is well-defined. Let $C_x, C_y \in X | \theta$. Therefore, we get $\phi(C_x \bullet C_y) = \phi(C_{x * y}) = f(x * y) = f(x) *' f(y) = \phi(C_x) *' \phi(C_y)$. This show that ϕ is an RG-homomorphism.

Let $C_x, C_y \in X | \theta$ be such that $\phi(C_x) = \phi(C_y)$. Then, $f(x) = f(y)$ and hence, $f(x * y) = f(x) *' f(y) = 0'$ and $f(y * x) = f(y) *' f(x) = 0'$. Thus, $x * y \in \ker f = K$ and $y * x \in \ker f = K$.

We have that $x\theta y$ and thus, $C_x = C_y$. Hence, ϕ is an injection. Let $y \in f(X)$. Then, there exists $x \in X$ such that $y = f(x)$ and $C_x \in X|\theta$. Therefore, $\phi(C_x) = f(x) = y$ and ϕ is a surjection. Hence, ϕ is an RG-isomorphism and $X|\theta \cong f(X)$. \square

Lemma 3.3: Let A and B be RG-ideals of an RG-algebra X . Then,

(i) $A \cap B$ is an RG-ideal of X .

(ii) If $A \cup B$ is an RG-algebra, then A is an RG-ideal of $A \cup B$.

Proof. Suppose that A and B are RG-ideals of an RG-algebra X .

(i) Since $0 \in A$ and $0 \in B$, $0 \in A \cap B$ and then, $A \cap B \neq \emptyset$. Let $x, y \in X$ be such that $x * y \in A \cap B$ and $0 * x \in A \cap B$. Thus, $x * y, 0 * x \in A$ and $x * y, 0 * x \in B$. It follows that $0 * y \in A$ and $0 * y \in B$. Thus, $0 * y \in A \cap B$ and hence, $A \cap B$ is an RG-ideal of X .

(ii) Suppose that $A \cup B$ is an RG-algebra.

Let $x, y \in A \cup B$ be such that $x * y \in A$ and $0 * x \in A$. Since $A \cup B \subseteq X$, $x, y \in X$. Therefore, $0 * y \in A$ and we get that A is an RG-ideal of $A \cup B$. \square

Remark: Suppose that A and B are finite RG-ideals of an RG-algebra $(X; *, 0)$ and $A \cup B$ is an RG-algebra. Let θ be the relation defined by $A \cap B$ and μ be the relation defined by B . Therefore, $(A|\theta; \bullet, \bar{C}_0)$ is the quotient RG-algebra and $A \cap B = \bar{C}_0 = \{a \in A \mid a\theta 0\} = \{a \in A \mid a * 0, 0 * a \in A \cap B\}$. Similarly, since μ be the relation defined by B , $((A \cup B)|\mu; \bullet, C_0)$ is the quotient RG-algebra and $B = C_0 = \{x \in A \cup B \mid 0\mu x\}$.

Theorem 3.4: Let A and B be RG-ideals of a finite RG-algebra X . If $A \cup B$ is an RG-algebra, then the quotient RG-algebras $A|\theta$ and $(A \cup B)|\mu$ are isomorphic, where θ is the relation defined by $A \cap B$ and μ is the relation defined by B .

Proof. Suppose that A and B are RG-ideals of a finite RG-algebra X and $A \cup B$ is an RG-algebra. By Lemma 3.3, B is an RG-ideal of $A \cup B$. Let $f : A \rightarrow (A \cup B)|\mu$, where μ is the relation defined by B , be a map defined by $f(a) = C_a$ for all $a \in A$, where $C_a = \{y \in A \cup B \mid a\mu y\}$. Let $a, b \in A$ be such that $a = b$. Then, $C_a = C_b$, it follows that $f(a) = f(b)$. Thus, f is well-defined. Let $C_x \in (A \cup B)|\mu$. Then, $x \in A \cup B$. If $x \in A$, then $C_x = f(x)$. If $x \in B$, then $x \in C_0$ and hence, $C_x = C_0 = f(0)$. Therefore, f is a surjection, that is, $f(A) = (A \cup B)|\mu$.

Let $a, b \in A$. Since $f(a * b) = C_{a * b} = C_a \bullet C_b = f(a) \bullet f(b)$, we then have f is an RG-homomorphism. Now, let $x \in \ker f$. Then, $f(x) = C_0$ and thus, $C_x = C_0$. It implies that $x \in C_0 = B$ and then, $\ker f \subseteq B$. Since $\ker f \subseteq A$, $\ker f \subseteq A \cap B$. On the other hand, let $x \in A \cap B$. Then, $x \in B = C_0$. It follows that $f(x) = C_x = C_0$, and we get that $x \in \ker f$. Therefore, $\ker f = A \cap B$. By Theorem 2.18, $A \cap B$ is an RG-ideal of A . Theorem 3.2 immediately gives us that $A|\theta$ is isomorphic to $f(A) = (A \cup B)|\mu$, where θ is the relation defined by $\ker f = A \cap B$. \square

Theorem 3.5: Suppose that A and B are RG-ideals of a finite RG-algebra $(X; *, 0)$

with $A \subseteq B \subseteq X$. Let θ be the relation defined by A . Then,

(1) the quotient RG-algebra $B|\theta$ is an RG-ideal of the quotient RG-algebra $X|\theta$, and

(2) the quotient RG-algebra $(X|\theta)|\beta$ is isomorphic to $X|\mu$, where β is the relation defined by $B|\theta$ and μ is the relation defined by B .

Proof. Suppose that A and B are RG-ideals of a finite RG-algebra X such that $A \subseteq B \subseteq X$. Let θ be the relation defined by A

(i) It is clear that $B|\theta = \{C_b | b \in B\} \subseteq \{C_b | b \in X\} = X|\theta$ and $C_0 \in B|\theta$. Let $C_x, C_y \in X|\theta$ be such that $C_x \bullet C_y \in B|\theta$ and $C_0 \bullet C_x \in B|\theta$. Then, $C_{x*y} \in B|\theta$ and $C_{0*x} \in B|\theta$. It follows that $x*y \in B$ and $0*x \in B$. Since B is an RG-ideals of X , $0*y \in B$. That is, $C_{0*y} \in B|\theta$ or $C_0 \bullet C_y \in B|\theta$. Therefore, $B|\theta$ is an RG-ideal of $X|\theta$.

(ii) Suppose that μ is the relation defined by B . Let $f : X|\theta \rightarrow X|\mu$ be a map defined by $f(C_x) = C'_x$ for all $x \in X$, where $C'_x = \{y \in X | x\mu y\}$ is the equivalence class of $x \in X$. Let $C_x, C_y \in X|\theta$ be such that $C_x = C_y$. Then, $x\theta y$, that is $x*y \in A$ and $y*x \in A$. Since $A \subseteq B$, $x*y \in B$ and $y*x \in B$. Thus, $x\mu y$ and so $C'_x = C'_y$. It implies that $f(C_x) = f(C_y)$ and hence, f is well-defined. Next, let $C'_x \in X|\mu$. We see that $x \in X$. If $x \in B$, then $x \in C'_0$ and $C'_x = C'_0 = f(C_0)$. If $x \notin B$, then there exists $C_x \in X|\theta$ such that $f(C_x) = C'_x$. Therefore, f is onto. Since, for all $C_x, C_y \in X|\theta$, $f(C_x \bullet C_y) = f(C_{x*y}) = C'_{x*y} = C'_x \bullet C'_y = f(C_x) \bullet f(C_y)$

$\bullet f(C_y)$. Hence, f is a RG-homomorphism.

Finally, we show that $\ker f = B|\theta$. Let

$C_x \in \ker f$. Then, $f(C_x) = C'_0$, that is $C'_x = C'_0 = B$. Thus, $x \in B$ and we have $C_x \in B|\theta$. Therefore, $\ker f \subseteq B|\theta$. On the other hand, we let $C_x \in B|\theta$. Then, $x \in B = C'_0$ and we get $f(C_x) = C'_x = C'_0$. Thus, $C_x \in \ker f$ and hence, $B|\theta \subseteq \ker f$. Consequently, $\ker f = B|\theta$. By Theorem 3.2, $(X|\theta)|\beta$ is isomorphic to $f(X|\theta) = X|\mu$, where β is the relation defined by $\ker f = B|\theta$. \square

4. Acknowledgements

Appreciation is extended to the Department of Mathematics and Statistics, Thammasat University for the support that made this research project possible.

5. References

Hu, Q.P. and Li, X., 1983, On BCH – algebras, Sem. Notes Kobi Univ. 11(2): 313-320.

Hu, Q. P. and Li, X., 1985, On proper BCH – algebras, Math. Japan 30(4): 659-661.

Imai, Y. and Iseki, K., 1966, On axioms systems of propositional calculi XIV, Proc. Japan Acad. 42: 19-22.

Iseki, K. , 1966, An algebra related with a propositional calculus, Proc. Japan Acad. 42: 26-29.

Jun, Y.B. , Roh, E. J. and Kim, H. S. , 1998, On BH – algebras, Sci. Math. Japan 1: 347-354.

Neggers, J. and Kim, H. S. , 1999, On d – algebras, Math. Solovca 49: 19-26.

Omar, R.A.K., 2014, On RG-Algebra, Pure Math.

Sci. 3(2): 59-70.
Patthanangkoor, P., 2018, RG-homomorphism
and its properties, *Thai J. Sci. Technol.*
7(5): 452-459.