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Abstract

In this paper, we investigate RG-isomorphism properties. Moreover, the relations between the

quotient RG-algebra and the RG-isomorphism are provided.
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1. Introduction

The notions of the two algebraic structures
BCK — algebra and BCI — algebra were first
introduced by Imai and Iseki ( 1966). BCK-
algebra is now known as a proper subclass of
the class of BCI — algebra. Later, Hu and Li
(1983) introduced the notion of BCH — algebra.
Again, Hu and Li (1985) considered the proper
BCH - algebra. More recently, Jun et al. (1998)
introduced the notion of BH — algebra which is a
generalization of (BCK/BCI) — algebras. The
notion of d- algebra, which is another
generalization of BCK — algebra, were introduced
by Neggers and Kim (1999). Furthermore, Omar
(2014) introduced RG — algebra which is a good
generalization of the

previous algebraic

structures and studied some of its basic
properties and also derived some straight
forward consequences relations between the
RG- algebra and the abelian group which is

related to it. Moreover, Omar (2014) studied the

notion of the homomorphism of RG- algebra,
called RG- homomorphism. Patthanangkoor
(2018) also studied some of RG-homomorphism
properties and derived some straight forward
consequences relations between the quotient
RG-algebra and the RG-homomorphism.

In this paper, we introduce the notion of
RG-isomorphism. The purpose of this paper is
to derive some straight forward consequences
relations between the quotient RG-algebra and

the RG-isomorphism and also investigate some

of RG-isomorphism properties.

2. Preliminary Results

This section gathers together results,
which we shall use later. We describe the
algebraic structure of RG-algebra and then go
on to introduce some important results related to
it.

Definition 2.1: An algebra (X;*,O) of

type (2,0) is called RG-algebra if the following
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axioms are satisfied ( Omar, 2014): For all
X, ¥,Ze X,
(i) xx0=x,

(i) x*y=(x*z)*(y*z) and
(i) x*xy=y=*x=0 imply X=Y.
Proposition 2.2: In any RG- algebra
(X;*,O) (Omar, 2014), the following hold: For
all x,y,ze X,

(i) 0% (y*x)=x*y,

(i) 0%(0%x) =X,

(ii)y x*(x*y)=y,

(iv) xxy=(zxy)*(z*x),

(v) x*y =0 ifand only if y*x=0,

o) (e y) = (xn)) o (22 y) =0,

(vii) X*x=0,

(viii) Xx*0=0 implies x=0.

Proposition 2. 3: In any RG- algebra
(X;*,O)(Omar, 2014), the following hold: For
all x,y,ze X,

i) (x*y)*(0xy)=(x*(0*y))*y=x,

(i) x*(x*(x*y))=x*y,

(i) (x*y)*z=(xxy)*((z+y)*(0*y))

=((x*2)*2)*(y*2)
= () y)*(2+)
=(x*2z)*y.

Definition 2.4: Let (X;*0) be an RG-
algebra. A nonempty subset A of X is called
an RG-sub algebra of X if (A;*,0) is itself an
RG-algebra.

Definition 2.5: Let (X;*,0) be an RG-
algebra (Omar, 2014). A nonempty subset A of
X is called an ideal or RG-ideal of X fif:

(i) 0€ A and

(i) x*yeA and 0*XeA imply 0xye A
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forall x,y e X.

Remark: If (X;*0) is an RG-algebra,
then {0} and X are RG-ideals of X.

Definition 2.6: Let (X;*,0) be an RG-
algebra and A be an RG-ideal of X (Omar,
2014). The relation # on X defined by x@y if
and only if x*xye A and yxxe A for all
X,y € X is called the relation defined by the
ideal A.

Remark: It is clear that 6 is an
equivalence relation on X.

Proposition 2.7: Let (X;*0) be an
RG-algebra. If A is an RG-ideal of X (Omar,
2014), then A is an RG-sub algebra of X.

Theorem 2.8: Let A be an RG-ideal of
an RG-algebra (X;*0) (Omar, 2014). If
xye A and Xe€A, then yeA for all
X,y € X, where @ is the relation defined by
the ideal A.

Recall that if @ is the relation on the non
empty-set X, then € is called a congruence
on X if and only if (i) # is an equivalence
relation on X and (ii) x8y and uév imply
(xu)@(yv) for all x,y,u,ve X.

Theorem 2.9: Let (X;*,0) be an RG-
algebra and A be an RG-ideal of X (Omar,
2014). If 0 is the relation defined by the ideal
A, then @ is a congruence on X.

Since @ is an equivalence relation on
(X ) *, O), for all X € X, the equivalence class
of X is C ={yeX|xdy} and the family
{C,|xe X} form a partition of X which is
denoted by X |6 . We define the operation e

on X|6’ by C,eC =C, forall X,yeX. ltis
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easy to verify that e is well-defined on X |c9
and (X|6;e,C,) satisfies axioms (i) and (ii) but
not (iii) of Definition 2.1 of RG-algebra. If the
axiom holds for all the classes C € X |0, that
is if the system (X|6;e,C,) is an RG-algebra,
then the congruence 6 is called regular.

Theorem 2.10: Let ( X;*,0) be an RG-
algebra and 6 be a congruence on X (Omar,
2014). Then, C,={xe X |00x} is an RG-
ideal of X.

Corollary 2.11: Let (X;*,0) be an RG-
algebra (Omar, 2014). Then, any RG-ideal in X
can be determined by some congruence.

Theorem 2.12: A congruence on an RG-
algebra X is regular if and only if it is defined
by some RG-ideal (Omar, 2014).

Corollary 2.13: All congruences of a
finite RG-algebra are regular and the theory of
universal algebra yields (Omar, 2014).

Definition 2. 14: Let (X;*,0) and
(Y;*',O') be two RG-algebras (Omar, 2014). A

mapping f:X —>Y is called an RG-
hommorphism if f(x*y)=f(x)* f(y) for
al Xx,yeX and is called an RG-

antihommorphism if f(x*y) =f(y)* f(x)
forall X,y e X . If T is an RG-hommorphism
or RG- antihommorphism, ker f =
{xeX| f(x)=07.

Example 2.15: Let X ={0,a,b,c} and

then

* be a binary operation on X defined by

* |0 a b ¢
0]0 a b ¢
ala 0 ¢ b
b|{b ¢ 0 a
c|lc b a 0
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Then, (X;%0) is an RG-algebra. Let
f:(X;%0)— (X;*0) be a mapping defined
by f (x)=x*x for all xe X. Thus, f is an
RG-hommorphism and ker f ={Xe X | f(x)=0}
={xeX|x*x=0} ={0,a,b,c} = X.

Definition 2.16: Let ( X;*,0) be an RG-
algebra. A non empty-subset | of X is called
a closed set of X if a*bel forall a,bel.

Definition 2.17: Let f: X —Y be an
RG- hommorphism, where (X;*,O) and
(Y;#,0") are RG-algebras and let & # | < X
and J# AcY. Theimageof | in X under f
is f(1)={f(x)|xel} and the inverse
image of A inY is f'l(A):{XeX| f(x)eA}.

Theorem 2.18: Let f: X —>Y be an
RG- homomorphism, where (X;*,O) and
(Y;*',O') are RG- algebras ( Patthanangkoor,
2018). Then,

() f(0)=0.

(i) If 0%x=X forall xe X, then f(0)*'y
=y forall ye f(X).

(iii) ker f is an RG-ideal of X.

(iv) ker f is an RG-sub algebra of X.

(v) ker f is a closed set of X.

(vi) ker f ={0} if and only if f is an
injective.

(vii) If xxy=0,then f(x) f(y)=0,
where X,y e X.

Theorem 2.19: Let f: X —>Y be an
RG- antihomomorphism, where (X;*,O) and
(Y;*',O') are RG- algebras ( Patthanangkoor,
2018). Then,

() f(0)=0"
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(i) F(0)*'y=y forall ye f(X).

(ii) ker f is an RG-ideal of X.

(iv) ker f is an RG-sub algebra of X.

(v) ker f is a closed set of X.

(vi) ker f ={0} ifand onlyif f isan
injective.

(vii) If x*y=0,then f(y)* f(x)=0,
where X,y e X.

Theorem 2.20: Let f: X —>Y be an
RG- homomorphism, where (X;*0) and
(Y;*',O') are RG- algebras ( Patthanangkoor,
2018). Then,

(i) If 1 is a closed set of X, then f(I)
is a closed set of Y.

(i) If 1 is an RG-ideal of X, then f(I)
is an RG-ideal of Y.

(iii) If f is an injective and | is an RG-
sub algebra of X, then f(l) is an RG-sub
algebra of Y.

(iv) If A isaclosedsetof Y, then f*(A)
is a closed set of X.

(V) If A is an RG-ideal of Y, then f7(A)
is an RG-ideal of X.

(vi)
Imf = f*(X)={f(x)] xe X}.

Recall that if (X;=*,0)

Im f is a closed set of Y, where
is a finite RG-
algebra and 6 is a congruence on X, by
Corollary 2.13, then @ is a regular and, using
Theorem 2.12, 6 is the relation defined by A,
where A is an RG-ideal of X. It implies that
(X |6;9,C,) is an RG-algebra and A=C, .
Definition 2.21: Let (X;*,0) be a finite
RG-algebra, # be a congruence on X, and,
C,={yeX|xdy} be the

for all XeX,
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equivalence class of X. Then,

X 16={C|xe X} form a partition of X and

the family

(X|9;0,C0) is an RG- algebra, where the
operation e on X |0 is defined as:
C,eC,=C_ forall x,yeX. (X |0;e,C,) is
called the quotient RG-algebra.

Theorem 2.22: Let (X;*,0) be a finite
RG-algebra, A be a closed RG-ideal of X and
6 be the relation defined by A (Patthanang-
koor, 2018). If f:X — X |6 is the map
defined by f(x)=C, forall xe X, then f is
a surjective RG-homomorphism, we call f is
the natural RG-homomorphism, and ker f = A.

Theorem 2.23: (Patthanangkoor, 2018)
Suppose that (X;#*,0) is a finite RG-algebra.
Let f: X ->Y be a surjective RG-
homomorphism, A be an RG- ideal of X
and 8 be the relation

RG-

contained in ker f

f g

homomorphism of X onto X |, then there

defined by A is the natural
exists a unique RG-homomorphism h of X | &
onto Y such that f =hog. Furthermore, h is

an injective if and only if A =Kker f.

3. Main Results

We maintain the notation introduced in
Section 2. Throughout, we let (X;*,0) and
(Y;*',O') be two RG-algebras. The aim of this
section is to describe the properties of RG-
isomorphism.

Definition 3.1: An injective RG-
homomorphism is called a RG-monomorphism.
A surjective RG-homomorphism is called an RG-

epimorphism. An RG-isomorphism is a bijective
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RG-homomorphism. Two RG-algebras X and
Y are isomorphic when there exists an RG-
isomorphism from X onto Y, this relationship
is denoted by X =Y.

Theorem 3.2: f:X —>Y is an RG-
isomorphism if and only if f':Y — X is an
RG-isomorphism.

Proof: Suppose that f: X —Y is an
RG-isomorphism. Then, f is a bijection. Thus,
f':Y - X is also a bijection. Let y,,y, €Y.
Then, y,=f(x) and y, = f(x,) for some
That X = ffl(yl) and

X, X, € X. is,

X, = fﬁl(yz). Therefore,
9= (1) 1 (x)
=17 (F(x*x,))
(1))

=X *X,
=7 (y,)* 7 (y,).
and then f*:Y > X is an RG-

homomorphism. Thus, f':Y — X is an RG-
isomorphism.

Conversely, if f*:Y > X is an RG-
isomorphism then f™ is a bijection. Thus,

X, X, € X,
x =f"(y,) and x,=f"(y,) for
Y, ¥, €Y. f(x)=y,
f(x,)=y,. Itfollows that

e )= 1017 () 7 (y.))

:f(f’l(yl*’yz))

(Fef)(v*y,)
=Y, %Y,
=f(x)* f(x,).

Therefore, f: X =Y is an RG-homomor-

f: X —>Y is also a bijection. Let
Then,
and

some Hence,
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phism and hence f:X-Y is an RG-isomorphism.
O

Remark: If f:X —>Y is an RG-

homomorphism, by Theorem 2.20, we have that

f(X) is an RG- ideal of Y. It follows by

Proposition 2. 7 that f(X) is an RG- sub
algebra of Y.
Theorem 3. 2: Let (X;*0) and

(Y;#,0") be finite RG-algebras. If f : X — Y is
an RG- homomorphism and @ is the relation
defined by ker f, then the quotient RG-algebra
X |0 is isomorphic to f (X).

Proof:  Suppose that f : X —Y is an

RG- homomorphism and @ is the relation
defined by ker f. By Theorem 2.18 (3), ker f
is an RG-ideal of X. By Theorem 2.9, @ is a
congruence on X. Using Corollary 2.13, 8 is a
regular. It implies that (X |0;,C,) is an RG-
algebra. Let K =ker f .

Assume that ¢: X |9 — f(X) defined
by ¢(C)="f(x) for all C,eX|0. Let
C,.C,eX|0 be such that C =C . Then,
x0y. It follows that x*y e K and y#*Xxe K.
Thus, f(x)* f(y)=f(y)* f(x)=0" It implies
that f(x) = f(y), thatis, ¢(C)=¢(C ). Hence,
¢ is well-defined. Let CX,Cy e X |t9. Therefore,
#(C,eC)=4¢(C,.)=f(x*y)=
f(x)* f(y)=4(C,)* ¢(C,). This show that

we get

¢ is an RG-homomorphism.

Let C,C, € X |0 be such that $(C,) =
¢(Cy). Then, f(x)= f(y) and hence, f(x*y)=

f(x)* f(y)=0" and f(y=x)= f(y)* f(x)
=0". Thus, x*yeckerf =K and y*xeker f =K.
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We have that x@y and thus, Cx :Cy. Hence,
¢ is an injection. Let y e f(X). Then, there
exists x e X such that y=f(x) and C e X|9.

pCl=f(x)=y and ¢

surjection. Hence, ¢ is an RG-isomorphism and

Therefore, is a

X160 = f(X). m|

Lemma 3.3: Let A and B be RG-ideals
of an RG-algebra X. Then,

(i) AnB is an RG-ideal of X .

(i) If AU B is an RG-algebra, then A is
an RG-ideal of AUB.

Proof. Suppose that A and B are RG-
ideals of an RG-algebra X.

(i) Since 0e Aand 0eB, 0cANB
and then, ANB=J. Let x,y e X be such
that x*ye AnB and 0*Xe AnB. Thus,
x*y,0xxe A and x*y,0+xeB. It follows
that Oxye A and O0*y e B. Thus, 0*xye AnB
and hence, AN B is an RG-ideal of X.

(i) Suppose that AU B is an RG-algebra.
Let X,ye AUB be such that x*ye A and
Oxxe A Since AuBc X, x,ye X.
Therefore, 0%y e A and we get that A is an

RG-ideal of AUB. O

Remark: Suppose that A and B are
finite RG-ideals of an RG-algebra (X;*,0) and
AU B is an RG-algebra. Let 6 be the relation
defined by AnB and u be the relation
defined by B. Therefore, (A|0;¢,C,) is the
quotient RG-algebra ANnB= 60 =
{acA|ag0}= {acA|ax0,0rac AnB}.

and

Similarly, since u be the relation defined by B,
(AU B)|y;0,CO) is the quotient RG-algebra
and B=C, = {xe AUB| 0ux}.
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Theorem 3.4: Let A and B be RG-
ideals of a finite RG-algebra X. If AUB is an
RG- algebra, then the quotient RG- algebras
A|9 and (Au B)|y are isomorphic, where 6
is the relation defined by AnB and x is the
relation defined by B.

Proof. Suppose that A and B are RG-
ideals of a finite RG-algebra X. and AUB is
an RG-algebra. By Lemma 3.3, B is an RG-
ideal of AUB Let f:A— (AU B)|,u, where
u is the relation defined by B, be a map
defined by f(a)=C, for all ac A, where
C,={ye AuB| auy}. Let a,b e A be such
that a=b. Then, C,=C,,
f(a)= f(b). Thus, f Let
C,e(AUB)|u. Then, xe AUB. If xeA,
then C = f(x). If xeB, then xeC, and

it follows that

is well- defined.

hence, C, =C, = f(0). Therefore, f is a
surjection, that is, f (A) = (AUB)|u.

Let a,be A Since f(axh)=C =C oC
= f(a)e f(b), we then have f is an RG-
homomorphism. Then,
f(x)=C, and thus, C =C_. It implies that
xeC,=B ker f < B.
ker f — A, ker f <« AnB. On the other hand,

let xe AnB. Then, xe B=C,. It follows that

Now, let x eker f.

and then, Since

f(x)=C =C,, and we get that x e ker f.
Therefore, ker f = AnB. By Theorem 2. 18,
ANB is an RG-ideal of A. Theorem 3.2
immediately gives us that A|¢9 is isomorphic to

f(A)=(AUB)|u, where @ is the relation
defined by ker f = AnB. O

Theorem 3.5: Suppose that A and B
are RG-ideals of a finite RG-algebra (X;*,0)
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with Ac B < X. Let 8 be the relation defined
by A. Then,

(1) the quotient RG-algebra B|¢9 is an
RG-ideal of the quotient RG-algebra X |9, and

(2) the quotient RG-algebra (X |¢9)|,6’ is
isomorphic to X |,u, where [ is the relation
defined by B|6’ and u is the relation defined
by B.

Proof: Suppose that A and B are RG-
ideals of a finite RG- algebra X such that
Ac Bc X. Let O be the relation defined by A

(i) It is clear that B|0 ={C, |bcB}c
{C,lbe X}=X|0 and C, eB|O. Let
CX,Cy e X |49 be such that C, OCy IS B|49 and

C IS B|6’ and

[

c

0*x

eC_eB|6. Then, C_,
eB|0. It follows that X*yeB and
O*xeB. Since B is an RG-ideals of X,
OxyeB. Thatis, C, Bl or C,eC <B|6.
Therefore, B|¢9 is an RG-ideal of X |9.

(ii)
defined by B. Let f:X|0 — X|u be a map
defined by f(C)=C/ for all xe X, where

Suppose that x4 is the relation

C! ={y e X|xuy} is the equivalence class of
xeX. Let C,C e X|9 be such that C =C.
Then, x@y, that is x*ye A and y*Xxe A
Since Ac B, x*yeB and y*xeB Thus,
xuy and so C/ =C/. It implies that f(C )=
f(C,) and hence, f is well-defined. Next, let
C! e X|u. We see that xe X. If xe B, then
xeC, and C/=C, =f(C)). If xgB, then
there exists C, € X |¢ such that f(C)=C..

Therefore, f is onto. Since, for all CX,Cy eX |9,

f(C,eC)=1f(C_.)=C/ =CleC =f(C)
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*f(C,) . Hence, f is a RG-homomorphism.
Finally, we show that ker f = B|0. Let

C ekerf. Then, f(C)=C,,

C/ =C,=B. Thus,

that is
xeB and we have
C e B|€. Therefore, ker f B|9. On the
other hand, we let C_ € B|¢. Then, xeB=C!
and we get f(C,)=C  =C_. Thus, C eker f
B|0  ker f.

ker f = B|0. By Theorem 3. 2, (X|t9)|ﬂ is

and hence, Consequently,

isomorphic to f (X |0) =X |y, where S is the

relation defined by ker f = B|9. O
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