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Abstract 

Multivariate control charts are an important tool in statistical process control for identifying an 
out-of-control process. Most multivariate control charts were designed to assume that the observations 
are an independence and normal distribution, but it is not valid in practice.  This paper proposes the 
copulas modeling for dependence and non-normal multivariate cases and compare bivariate copulas 
on Hotelling’s T2 and double multivariate exponentially weighted moving average (DMEWMA) control 
charts.  Observations are from an exponential distribution with Monte Carlo simulation when the 
parameter shifts are 1. 02, 1. 04, 1. 06, 1. 08, and 1. 1.  The level of dependence of observations is 
measured by Kendall’s tau as 0.8 and -0.8 for normal, Frank and Clayton copulas. The performance 
of control charts is based on the average run length (ARL)  in each copula.  The results show that in 
the case of one and two-parameter shifts, the performance of the Hotelling’s T2 is better than DMEWMA 
control chart for all modifications.   
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1. Introduction  

Statistical process control ( SPC)  is an 
effective tool in simple manufacturing processes 
with only one process output variable or quality 
characteristic.  In practice, most process 
monitoring and control scenarios involve more 
than one variable.  A univariate control chart is 
the most type of SPC procedure for a single 
process characteristic. Multivariate methods that 
consider the variables jointly are required. 

Multivariate statistical process control ( MSPC) 
charts have been regarded as the multivariate 
extensions of the univariate charts (Montgomery, 
2013). Several multivariate quality control charts 
have been proposed to monitor the quality 
characteristics.  Most multivariate detection 
procedures are based on a multi- normality 
assumption and independence, but many 
processes assume non- normality and 
correlation. 
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Copulas approach is a representation by 
Sklar (1959 and 1973) , which has become a 
popular tool for modeling non- linearity, 
asymmetrically, and tail dependence in several 
fields; it can be used in the study of dependence 
or association between random variables.  The 
copulas can estimate the joint distribution of 
nonlinear outcomes and describe the 
dependence structure among variables through 
the joint distribution by eliminating the effect of 
univariate marginals.  Bivariate copulas are the 
simplest case for the description of dependent 
random variables, and they can be used with 
control charts.  Recent papers have applied 
copulas on control charts such as, 
Sukparungsee et al. (2018) proposed five types 
of copulas on the Hotelling’ s T2 control chart; 
Fatahi et al. (2011) studied the joint distribution 
of two correlated zero-inflated Poisson ( ZIP) 
distributions using the copula function approach; 
Fatahi et al.  ( 2012)  develop a copula- based 
bivariate ZIP control chart which can be used for 
monitoring correlated rare events; Dokouhaki 
and Noorossana ( 2013)  applied the Markov 
approach for modeling the auto‐correlated data, 
and the copula approach is used making the 
joint distribution of two auto‐ correlated binary 
data series; Hryniewicz ( 2012)  presented the 
concept of copulas to model dependencies of 
other types on Shewhart control charts for auto-
correlated and normal data.  Verdier ( 2013) 
proposed a new approach for the non-normal 
multivariate case and constructed a tolerance 
region obtained from a density level set 
estimation on the Hotelling’s T2 control chart. 

This paper presents a comparative 
performance of the Hotelling’ s T2 and double 
multivariate exponentially weighted moving 
average ( DMEWMA)  control charts when 
observations are from an exponential distribution 
with the mean shifts and use bivariate copulas 
for specifying dependence between random 
variables.  
 

2.  Hotelling’s T2 control chart 
 Suppose that X  and S  are the sample 

mean vector and covariance of the matrix, 
respectively.  Let m and p be the number of 
samples and the number of quality 
characteristics observed in each sample, 
respectively.  The Hotelling’ s T2 statistic is T2 
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Statistical process control is usually split 
into two phases (Montgomery, 2013) .  Phase I 
constitutes a retrospective analysis, constructing 
trial control limits to determine if the process has 
been in control.  Once this is achieved, the 
controlled data are used in Phase II to monitor 
the process.  The control chart has a centerline 
representing the average value of the quality 
characteristic corresponding to the in- control 
process.  Two other horizontal lines, called the 
upper control limit (UCL)  and the lower control 
limit (LCL), are shown on the chart. 

For phase I, the control limits are 
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where 
2/)1(,2/, −− pmp

  is an upper   

percentage point of beta distribution with 
parameters p/2 and (m-p-1) /2 (Bersimis et al. , 
2007) .  For the phase II control limits for this 

statistic are 
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with parameters p and ( m- p) .  Note that this 
article will mostly focus on Phase II control 
charts and their performance.  
 

3. Double multivariate exponentially 
weighted moving average control chart 
(DMEWMA) 

Suppose that ,..., 21 xx  are 1p  
random vectors each representing the p- variate 
normal distribution ),,(N 00   with mean 
vector 0  and variance- covariance matrix 0  
for in-control. The MEWMA statistic iy  and iz            
for i = 1, 2,…; which is written by   i i=  +y x

1( ) i−−I y (2) and  1)(  −−+= iii zIyz  (3) 
where  0z0 =  and   is a diagonal matrix with 
entries .,...,1 p  The first equation in (2) is just 
the MEWMA statistic iy  calculated from ix  
and the second equation in ( 3)  is the MEWMA 
statistic iz  calculated from iy .  The original 
data ix  is double smoothed, such that iz  is 
called the DMEWMA statistics, with 

10 , = I  and .  000 μzy ==  The 
DMEWMA control chart statistics 
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let →i , the asymptotic variance- covariance 

matrix is: 
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then the signal gives an out-of- control, where h 
is the control limit ( Alkahtani and Schaeffer, 
2012; Abdella et al., 2018). 
 

4. Copulas modeling 
Copulas introduced by Sklar ( see Sklar, 

1959) .  According to Sklar’ s theorem for a 
bivariate case, let X and Y be continuous 
random variables with joint distribution function 
H and marginal cumulative distribution F(x) and 
F( y) , respectively.  Then 

));(),((),( yFxFCyxH =  with a copula 
   1,01,0:

2
→C , where   is a parameter of 

the copula called the dependence parameter, 
which measures dependence between the 
marginals.  For the purposes of the statistical 
method, it is desirable to parameterize the 
copula function.  Let   denote the association 
parameter of the bivariate distribution, and there 
exists a copula C. Then F(x) = u and F(y) = v, 
where u and v are uniformly distributed variates 
( Trivedi and Zimmer, 2005) .   The copulas 
function has two families as follows: 

4.1 Elliptical copulas 
Elliptical copulas are simply the 

copulas of elliptical distributions.   Simulation 
from elliptical distributions is easy, and as a 
consequence of Sklar’s Theorem is a simulation 
from elliptical copulas.   Two common elliptical 
copulas are the Gaussian ( normal)  and 
Student’s t distributions.  Each of these copulas 
can be extended to d- dimensional space, but 
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this paper only focuses on the Normal copula. 
The Normal copula is an elliptical copula is 
defined as:  ));(),(();,( 11  vuvuC N

−− = ; 
11 −   (7) where ),( vuN  is the cumulative 

probability distribution function of the bivariate 
normal distribution, )(1 u−  and )(1 v−  are 
the inverse of the cumulative probability function 
of the univariate normal distribution. 

4.2 Archimedean copulas 
Let   be a class of continuous, 

strictly decreasing functions    → ,01,0:  
such that 0)( ,0)1( = t  and 0)(  t   
for all 10  t  ( Nelsen, 2006; Genest and 
McKay, 1986; Genest and Rivest, 1993). These 
are two types of Archimedean copulas 
generated as follows: 

4.2.1 Frank Copula 
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4.2.2 Clayton copula 
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5. Dependence measures for data 

Generally, a parametric measure of the 
linear dependence between random variables is 
the correlation coefficient, and nonparametric 
measures of dependence are Spearman’ s rho 
and Kendall’ s tau.  According to the earlier 
literature, copulas can be used to study 
dependence or association between random 
variables. The values of Kendall’ s tau are easy 
to calculate, so this measure is used for 
observation dependencies. 

Let X and Y be continuous random 
variables whose copula is C then Kendall’ s tau 

for X and Y is given by 1),( ),(4
2
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where c  is Kendall’ s tau of copula C and the 
unit square 2

I is the product II  where 
 1,0=I  and the expected value of the function 

),( vuC of uniform (0,1) random variables U and 
V whose joint distribution function is C, i. e. , 
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5.1.1 Frank copula 
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5.1.2 Clayton copula 
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6. Performance of control charts 
The basic characteristic that describes 

control charts’ performance is the Average Run 
Length (ARL) , which is the average number of 
points that must be plotted before a point 
indicates an out-of-control. ARL is classified into 
ARL0 and ARL1, where ARL0 is the Average Run 
Length when the process is in-control and ARL1 
is the Average Run Length when the process is 
out-of-control. 
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In this paper, we use a Monte Carlo 
simulation in R statistical software (M ̈achler and 
Zurich, 2011-2012; Yan, 2007) with the number 
of simulation runs 50,000 and sample sizes 
1,000.  Observations were from an exponential 
distribution with in- control parameter .1=  
The shift size is reported in terms of the quantity 

0 −=  and large values of  correspond 
to bigger shift in the mean.  The value 0=  
and the process mean 1=  are in-control. The 
process means are 1.02, 1.04, 1.06, 1.08, and 
1.1 for out-of-control. 

The simulation results were carried out to 
evaluate the performance of the Hotelling’ s T2 
control chart, and the DMEWMA control chart 
with .05.0=  Copulas estimations are 

restricted to the cases of positive and negative 
dependence.  For all copula models, the setting 
  corresponds with Kendall’s tau.  The level of 
dependence is measured by Kendall’ s tau 
values )11( −   which are defined to 0. 8 
and -0.8, respectively. 
 

7. Numerical results 
The results are presented in Tables 1-4, 

and the different values of exponential 
parameters denote 1  for the variables X and 

2  for the variables Y.   For in- control, control 
charts were chosen by setting the desired ARL0 
= 370 for each copula.  Tables 1-2 show strong 
positive dependence ( )8.0=  and Tables 3-4 
show strong negative dependence ( )8.0−= . 

 
Table 1 ARL0 and ARL1 values of control charts with Kendall’s tau equal to 0.8 in the case of one 

parameter shifts at 1  or 2 . 
 

Parameters  
shifts 

Types of control charts 
Hotelling’s T2 DMEWMA 

1  2  Normal Frank Clayton Normal Frank Clayton 
1 1 369.873 370.159 370.009 369.739 370.036 369.904 
1 1.02 355.470 352.910 356.129 358.012 356.476 359.604 
1 1.04 336.555 340.471 343.186 344.642 340.732 344.840 
1 1.06 320.981 328.888 329.263 330.497 328.521 332.529 
1 1.08 304.142 315.771 314.523 316.389 314.808 316.656 
1 1.1 286.338 301.977 299.246 304.480 301.490 302.728 
1 1 369.873 370.159 370.009 369.739 370.036 369.904 

1.02 1 353.405 354.389 355.886 359.709 358.398 358.315 
1.04 1 338.413 344.341 344.282 344.070 343.506 342.606 
1.06 1 319.972 329.466 329.822 328.720 326.768 331.008 
1.08 1 303.122 316.329 314.385 315.598 314.321 315.439 
1.1 1 287.430 300.675 299.802 303.648 300.635 300.328 
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The result in Table 1 shows the mean 
shifts of when is fixed at 1, for the parameter 
shift =  1. 02, the ARL1 value of the Frank 
copula on the Hotelling’ s T2 control chart is 

less than the other copulas; and the other 
shifts, the ARL1 values of the Normal copula 
on the Hotelling’ s T2 control chart are less 
than the other copulas. When is fixed at 1, the  

 
Table 2 ARL0 and ARL1 values of control charts with Kendall’ s tau equal to 0. 8 in the case of two 

parameter shifts at 1  and 2 . 
 

Parameters  
shifts 

Type of control charts 
Hotelling’s T2 DMEWMA 

1  2  Normal Frank Clayton Normal Frank Clayton 
1 1 369.873 370.159 370.009 369.739 370.036 369.904 

1.02 1.02 339.930 344.763 343.462 346.905 346.749 345.967 
1.04 1.04 313.508 322.770 317.983 325.373 320.750 321.439 
1.06 1.06 288.406 298.431 296.771 301.847 298.082 302.819 
1.08 1.08 266.017 280.742 274.405 283.412 279.967 279.428 
1.1 1.1 245.511 259.140 254.223 266.924 261.138 260.614 

 
Table 3 ARL0 and ARL1 values of control charts with Kendall’ s tau equal to - 0. 8 in the case of one 

parameter shifts at 1  or 2 . 
 

Parameters 
shifts 

Type of control charts 
Hotelling’s T2 DMEWMA 

1  2  Normal Frank Clayton Normal Frank Clayton 
1 1 370.012 369.959 370.109 370.030 369.968 369.841 
1 1.02 356.011 356.207 354.420 358.121 358.255 356.991 
1 1.04 341.964 341.236 338.637 343.603 344.349 343.688 
1 1.06 325.497 325.807 323.094 330.954 328.921 329.797 
1 1.08 312.953 311.910 312.068 318.684 315.088 319.627 
1 1.1 300.119 296.065 296.004 305.383 305.584 305.930 
1 1 370.012 369.959 370.109 370.030 369.968 369.841 

1.02 1 356.399 356.833 356.942 357.208 356.907 357.052 
1.04 1 342.439 341.682 342.127 342.793 342.144 343.917 
1.06 1 325.547 329.568 324.481 332.379 331.893 329.941 
1.08 1 310.445 311.245 312.284 317.710 316.308 319.074 
1.1 1 297.094 297.005 299.235 305.751 303.375 305.368 
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Table 4 ARL0 and ARL1 values of control charts with Kendall’ s tau equal to -0. 8 in the case of two 
parameter shifts at 1  and 2 . 

 

Parameters  
shifts 

Type of control charts 
Hotelling’s T2 DMEWMA 

  1     2      Normal Frank Clayton Normal Frank Clayton 
1 1 370.012 369.959 370.109 370.030 369.968 369.841 

1.02 1.02 343.269 344.380 344.000 345.630 343.936 344.504 
1.04 1.04 318.851 317.002 317.303 321.720 321.080 321.481 
1.06 1.06 293.561 293.140 290.101 300.171 298.786 301.591 
1.08 1.08 272.739 268.715 270.753 280.218 278.643 279.727 
1.1 1.1 252.297 249.462 250.027 262.172 260.552 262.442 

 
ARL1 values of the Normal copula on the 
Hotelling’ s T2 control chart are less than the 
other copulas for all shifts.  Table 2 shows two-
parameter shifts of the ARL1 values of the 
Normal copula on the Hotelling’s T2 control chart 
are less than the other copulas for all shifts. 

Table 3 shows the mean shifts of 
8.0−=  when 1  is fixed at 1, for the 

parameter shifts 2 =1.02, 1.04, 1.06, and 1.1; 
the ARL1 values of the Clayton copula on the 
Hotelling’ s T2 control chart are less than the 
other copulas; except for the shift 2 =1.08, the 
ARL1 value of the Frank copula on the 
Hotelling’s T2 control chart is less than the other 
copulas. When 2  is fixed at 1, the ARL1 values 
of the Normal copula on the Hotelling’s T2 control 
chart are less than the other copulas at 1 =1.02 
and 1. 08; the ARL1 values of the Frank copula 
on the Hotelling’ s T2 control chart are less than 
the other copulas at 1 = 1. 04 and 1. 1; and the 
ARL1 value of the Clayton copula on the 
Hotelling’s T2 control chart is less than the other 
copulas at 1 =1.06.  

Table 4 shows two-parameter shifts of 
,8.0−=  the ARL1 value of the Normal copula 

on the Hotelling’s T2 control chart is less than 
the other copulas at the shift is 1.02; the ARL1 
values of the Frank copula on the Hotelling’s T2 
control chart are less than the other copulas at 
the shifts are 1.04, 1.08 and 1.1; the ARL1 value 
of the Clayton copula on the Hotelling’s T2 
control chart is less than the other copulas at the 
shift is 1.06. 
 

8. Conclusions 
The results presented two control charts 

for dependence measures of two variables by 
copulas modeling based on ARL property.  The 
ARL comparisons indicate that the Hotelling’s T2 
control chart performs better than the DMEWMA 
control chart for all shifts when the parameter 
shifts are 1. 02, 1. 04, 1. 06, 1. 08, and 1. 1.  For 
strong positive dependence ( )8.0= , in the 
case of one and two parameter shifts; the ARL1 
values of the Normal copula on the Hotelling’ s 
T2 control chart are less than the other copulas 
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for almost all shifts.  For strong negative 
dependence ( )8.0−= , in the case of one and 
two parameter shifts; the ARL1 values of three 
copulas on the Hotelling’ s T2 control chart are 
less than the other copulas, but three types of 
copulas would be more sensitive.  
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