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Abstract

Multivariate control charts are an important tool in statistical process control for identifying an
out-of-control process. Most multivariate control charts were designed to assume that the observations
are an independence and normal distribution, but it is not valid in practice. This paper proposes the
copulas modeling for dependence and non-normal multivariate cases and compare bivariate copulas
on Hotelling’s T? and double multivariate exponentially weighted moving average (DMEWMA) control
charts. Observations are from an exponential distribution with Monte Carlo simulation when the
parameter shifts are 1.02, 1.04, 1.06, 1.08, and 1.1. The level of dependence of observations is
measured by Kendall’s tau as 0.8 and -0.8 for normal, Frank and Clayton copulas. The performance
of control charts is based on the average run length (ARL) in each copula. The results show that in
the case of one and two-parameter shifts, the performance of the Hotelling’s T? is better than DMEWMA

control chart for all modifications.
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1. Introduction Multivariate statistical process control (MSPC)

Statistical process control (SPC) is an
effective tool in simple manufacturing processes
with only one process output variable or quality
characteristic. In  practice, most process
monitoring and control scenarios involve more
than one variable. A univariate control chart is
the most type of SPC procedure for a single
process characteristic. Multivariate methods that

consider the variables jointly are required.

charts have been regarded as the multivariate
extensions of the univariate charts (Montgomery,
2013). Several multivariate quality control charts
have been proposed to monitor the quality
characteristics.  Most multivariate detection
procedures are based on a multi- normality
assumption and independence, but many
processes assume non- normality and

correlation.
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Copulas approach is a representation by
Sklar (1959 and 1973), which has become a
popular tool for modeling non- linearity,
asymmetrically, and tail dependence in several
fields; it can be used in the study of dependence
or association between random variables. The
copulas can estimate the joint distribution of
nonlinear outcomes and describe the
dependence structure among variables through
the joint distribution by eliminating the effect of
univariate marginals. Bivariate copulas are the
simplest case for the description of dependent
random variables, and they can be used with
control charts. Recent papers have applied

copulas on control charts such as,
Sukparungsee et al. (2018) proposed five types
of copulas on the Hotelling’s T2 control chart;
Fatahi et al. (2011) studied the joint distribution
of two correlated zero-inflated Poisson ( ZIP)
distributions using the copula function approach;
Fatahi et al. (2012) develop a copula-based
bivariate ZIP control chart which can be used for
monitoring correlated rare events; Dokouhaki
and Noorossana (2013) applied the Markov
approach for modeling the auto-correlated data,
and the copula approach is used making the
joint distribution of two auto- correlated binary
data series; Hryniewicz (2012) presented the
concept of copulas to model dependencies of
other types on Shewhart control charts for auto-
correlated and normal data. Verdier (2013)
proposed a new approach for the non-normal
multivariate case and constructed a tolerance
set

region obtained from a density level

estimation on the Hotelling’s T2 control chart.
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This paper presents a comparative
performance of the Hotelling’s T2 and double
multivariate exponentially weighted moving
average ( DMEWMA) control charts when
observations are from an exponential distribution
with the mean shifts and use bivariate copulas
for specifying dependence between random

variables.

2. Hotelling’s T? control chart

Suppose that X and S are the sample
mean vector and covariance of the matrix,
respectively. Let m and p be the number of
and the number of

samples quality

characteristics observed in each sample,

respectively. The Hotelling’s T? statistic is T2

==X s7 (X=X) (1), where X~ 3x,

i=1

and 5= $(X-X)X-X).
m-1."7,
Statistical process control is usually split
into two phases (Montgomery, 2013). Phase |
constitutes a retrospective analysis, constructing
trial control limits to determine if the process has
been in control. Once this is achieved, the
controlled data are used in Phase Il to monitor
the process. The control chart has a centerline
representing the average value of the quality
characteristic corresponding to the in- control
process. Two other horizontal lines, called the
upper control limit (UCL) and the lower control
limit (LCL), are shown on the chart.
limits are

For phase [, the control

(m-1)°
m

UCL = p and LCL=0

a,pl2,(m-p-1)/2



Thai Journal of Science and Technology

171 9 « 3L 6 « WgAIA 1YW - 51I1AN 2563

where [

is an upper
a,pl2,(m-p-1)/2 PP

o

percentage point of beta distribution with
parameters p/2 and (m-p-1)/2 (Bersimis et al.,
2007). For the phase Il control limits for this
p(m+21)(m-1) F

a,p,(m-p)

statistic are UCL =
m? -mp

and LCL=0 where F

a,p,(m-p

) is F distribution

with parameters p and (m-p). Note that this
article will mostly focus on Phase Il control

charts and their performance.

3. Double multivariate exponentially
weighted moving average control chart

(DMEWMA)

Suppose that X;,X,,... are pxl
random vectors each representing the p- variate
normal distribution N(z,Z,), with mean
vector 14, and variance- covariance matrix 2,
for in-control. The MEWMA statistic y; and z,
for i =1, 2,...; which is written by Yy, =
(I-A)y,,2)and z;=AYy; +(1-A)z;; (3)

where Z, =0 and A is a diagonal matrix with

A X +

entries 4,,...,4,. The first equation in (2) is just
the MEWMA statistic y; calculated from X;
and the second equation in (3) is the MEWMA
statistic Z

calculated from Yy;. The original

data X; is double smoothed, such that z; is
the DMEWMA statistics,
A=A1L,0<A<1 and Yy, = Z,=p,.

DMEWMA  control T

called with

The

chart statistics is
-1 -1

T :Zgzzlzi (4) where Zz, is the inverse

of the exact variance-covariance matrix of 7,

1 1 S R
ond 1 ]

). ()
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let | — o0, the asymptotic variance- covariance

2
£@2-2+0) (2(2__21;’1 )ZO (6) if TZ>h

then the signal gives an out- of- control, where h

matrix is: ZZ =

is the control limit ( Alkahtani and Schaeffer,

2012; Abdella et al., 2018).

4. Copulas modeling

Copulas introduced by Sklar (see Sklar,
1959) . According to Sklar’ s theorem for a
bivariate case, let X and Y be continuous
random variables with joint distribution function

H and marginal cumulative distribution F(x) and

F( Y) ) respectively. Then
H(x,y)=C(F(x),F(y);#) with a copula
C: [0,1]2 — [0,1], where 6 is a parameter of

the copula called the dependence parameter,
which measures dependence between the
marginals. For the purposes of the statistical
method, it is desirable to parameterize the
copula function. Let @ denote the association
parameter of the bivariate distribution, and there
exists a copula C. Then F(x) = u and F(y) = v,
where u and v are uniformly distributed variates
( Trivedi and Zimmer, 2005). The copulas
function has two families as follows:
4.1 Elliptical copulas

Elliptical copulas are simply the
copulas of elliptical distributions.  Simulation
from elliptical distributions is easy, and as a
consequence of Sklar's Theorem is a simulation
from elliptical copulas. Two common elliptical
copulas are the Gaussian ( normal) and
Student’s t distributions. Each of these copulas

can be extended to d-dimensional space, but
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this paper only focuses on the Normal copula.
The Normal copula is an elliptical copula is
defined as: C(u,v;8) = d (O (u),®*(v);6) ;
-1<6<1 (7) where @ (u,V) is the cumulative
probability distribution function of the bivariate
normal distribution, ®*(u) and ®*(v) are
the inverse of the cumulative probability function
of the univariate normal distribution.
4.2 Archimedean copulas

Let @ be a class of continuous,
strictly decreasing functions ¢:[0,1]— [0, 0]
such that ¢(1)=0,¢'(t)<0 and ¢"(t)>0
for all O<t<1 (Nelsen, 2006; Genest and
McKay, 1986; Genest and Rivest, 1993). These
types
generated as follows:

4.2.1 Frank Copula

"
C(u,v;0)=—;ln(l+(e;12(el_l)), (8)

are two of Archimedean copulas

,a_

where

90 =-InC5=); 0 (=o0)\0,

4.2.2 Clayton copula
Cu,v;0)= [max(u“’ +vi-1, O)}W ,(9)
where @(t)=(t"7-1)/0; 6e(~1,x)\0.

—In(

5. Dependence measures for data
Generally, a parametric measure of the
linear dependence between random variables is
the correlation coefficient, and nonparametric
measures of dependence are Spearman’s rho
and Kendall' s tau. According to the earlier
literature, copulas can be used to study
dependence or association between random
variables. The values of Kendall’s tau are easy
to calculate, so this measure is used for

observation dependencies.
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Let X and Y be continuous random
variables whose copula is C then Kendall’s tau
for Xand Yis given by 7, :4H|ZC(U'V) dC(u,v)-1
where 7 is Kendall's tau of copula C and the

1 xI1

I =[0,1] and the expected value of the function

unit square 1% is the product where
C(u,V) of uniform (0,1) random variables U and
V whose joint distribution function is C, i.e.,
7, =4E[C(U,V)]-1.

Genest and McKay (1986) considered

Archimedean copula C generated by ¢, then

[ 40
Tarch = 4J.,— dt +1 where 7,,,, is Kendall's
2 9'()

tau of Archimedean copula C.
5.1 Normal copula
. arcsin (6)
wl2
5.1.1 Frank copula

; 0 e€[-1,1] (10)

! 1T[tdt-1

fle-1

I :1+°T G e(<0,0)\{0} (1)

5.1.2 Clayton copula

T =% ; 0e[-1,0)\{0} (12)

6. Performance of control charts

The basic characteristic that describes
control charts’ performance is the Average Run
Length (ARL), which is the average number of
points that must be plotted before a point
indicates an out-of-control. ARL is classified into
ARL, and ARL,, where ARL, is the Average Run
Length when the process is in-control and ARL,
is the Average Run Length when the process is

out-of-control.
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In this paper, we use a Monte Carlo
simulation in R statistical software (I\/iéchler and
Zurich, 2011-2012; Yan, 2007) with the number
of simulation runs 50,000 and sample sizes
1,000. Observations were from an exponential
distribution with in- control parameter o =1.
The shift size is reported in terms of the quantity
O = u— U, and large values of o correspond
to bigger shift in the mean. The value 6 =0
and the process mean u =1 are in-control. The
process means are 1.02, 1.04, 1.06, 1.08, and
1.1 for out-of-control.

The simulation results were carried out to
evaluate the performance of the Hotelling’s T2
control chart, and the DMEWMA control chart

with 4 =0.05. Copulas estimations are

Table 1 ARL, and ARL, values of control charts

parameter shifts at 1, or s, .

restricted to the cases of positive and negative
dependence. For all copula models, the setting
6 corresponds with Kendall’s tau. The level of
dependence is measured by Kendall’ s tau
values (—1<7 <1) which are defined to 0.8

and -0.8, respectively.

7. Numerical results

The results are presented in Tables 1-4,
and the different values of exponential
parameters denote 4 for the variables X and
M, for the variables Y. For in-control, control
charts were chosen by setting the desired ARL,
=370 for each copula. Tables 1-2 show strong
positive dependence (r =0.8) and Tables 3-4

show strong negative dependence (z' = —0.8).

with Kendall's tau equal to 0.8 in the case of one

Parameters Types of control charts
shifts Hotelling’s T2 DMEWMA

A 75 Normal Frank Clayton Normal Frank Clayton
1 1 369.873 370.159 370.009 369.739 370.036 369.904
1 1.02 355.470 352.910 356.129 358.012 356.476 359.604
1 1.04 336.555 340.471 343.186 344.642 340.732 344.840
1 1.06 320.981 328.888 329.263 330.497 328.521 332.529
1 1.08 304.142 315.771 314.523 316.389 314.808 316.656
1 1.1 286.338 301.977 299.246 304.480 301.490 302.728
1 1 369.873 370.159 370.009 369.739 370.036 369.904
1.02 1 353.405 354.389 355.886 359.709 358.398 358.315
1.04 1 338.413 344.341 344.282 344.070 343.506 342.606
1.06 1 319.972 329.466 329.822 328.720 326.768 331.008
1.08 1 303.122 316.329 314.385 315.598 314.321 315.439
1.1 1 287.430 300.675 299.802 303.648 300.635 300.328
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The result in Table 1 shows the mean
shifts of when is fixed at 1, for the parameter
shift = 1.02, the ARL1 value of the Frank

copula on the Hotelling’s T2 control chart is

less than the other copulas; and the other
shifts, the ARL1 values of the Normal copula
on the Hotelling’s T2 control chart are less

than the other copulas. When is fixed at 1, the

Table 2 ARL, and ARL, values of control charts with Kendall’s tau equal to 0.8 in the case of two

parameter shifts at 1, and L, .

Parameters Type of control charts

shifts Hotelling’s T2 DMEWMA
M 75 Normal Frank Clayton Normal Frank Clayton
1 1 369.873 370.159 370.009 369.739 370.036 369.904

1.02 1.02 339.930 344.763

343.462 346.905 346.749 345.967

1.04 1.04 313.508 322.770

317.983 325.373 320.750 321.439

1.06 1.06 288.406 298.431

296.771 301.847 298.082 302.819

1.08 1.08 266.017 280.742

274.405 283.412 279.967 279.428

1.1 1.1 245.511 259.140

254.223 266.924 261.138 260.614

Table 3 ARL, and ARL, values of control charts with Kendall’s tau equal to - 0.8 in the case of one

parameter shifts at y4 or L, .

Parameters Type of control charts
shifts Hotelling’s T2 DMEWMA
A y75 Normal Frank Clayton Normal Frank Clayton
1 1 370.012 369.959 370.109 370.030 369.968 369.841

1 1.02 356.011 356.207

354.420 358.121 358.255 356.991

1 1.04 341.964 341.236

338.637 343.603 344.349 343.688

1 1.06 325.497 325.807

323.094 330.954 328.921 329.797

1 1.08 312.953 311.910

312.068 318.684 315.088 319.627

1 1.1 300.119 296.065 296.004 305.383 305.584 305.930

1 1 370.012 369.959 370.109 370.030 369.968 369.841
1.02 1 356.399 356.833 356.942 357.208 356.907 357.052
1.04 1 342.439 341.682 342127 342.793 342.144 343.917
1.06 1 325.547 329.568 324.481 332.379 331.893 329.941
1.08 1 310.445 311.245 312.284 317.710 316.308 319.074
1.1 1 297.094 297.005 299.235 305.751 303.375 305.368
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Table 4 ARL, and ARL, values of control charts with Kendall’s tau equal to -0.8 in the case of two

parameter shifts at 4 and 4, .

Parameters Type of control charts
shifts Hotelling’s T2 DMEWMA

A y Normal Frank Clayton Normal Frank Clayton

1 1 370.012 369.959 370.109 370.030 369.968 369.841
1.02 1.02 343.269 344.380 344.000 345.630 343.936 344.504
1.04 1.04 318.851 317.002 317.303 321.720 321.080 321.481
1.06 1.06 293.561 293.140 290.101 300.171 298.786 301.591
1.08 1.08 272.739 268.715 270.753 280.218 278.643 279.727
1.1 1.1 252.297 249.462 250.027 262.172 260.552 262.442

ARL1 values of the Normal copula on the
Hotelling’s T2 control chart are less than the
other copulas for all shifts. Table 2 shows two-
parameter shifts of the ARL1 values of the
Normal copula on the Hotelling’s T2 control chart
are less than the other copulas for all shifts.
Table 3 shows the mean shifts of
7=-0.8 when g is fixed at 1, for the
parameter shifts 14, =1.02, 1.04, 1.06, and 1.1;
the ARL, values of the Clayton copula on the
Hotelling’s T? control chart are less than the
other copulas; except for the shift 1z, =1.08, the
ARL, value of the Frank copula on the
Hotelling’s T2 control chart is less than the other
copulas. When 44, is fixed at 1, the ARL, values
of the Normal copula on the Hotelling’s T2 control
chart are less than the other copulas at x4, =1.02
and 1.08; the ARL, values of the Frank copula
on the Hotelling’s T2 control chart are less than
the other copulas at 44,=1.04 and 1.1; and the
ARL, value of the Clayton copula on the
Hotelling’s T2 control chart is less than the other

copulas at z4=1.06.

758

Table 4 shows two-parameter shifts of
7 =—0.8, the ARL, value of the Normal copula
on the Hotelling’s T? control chart is less than
the other copulas at the shift is 1.02; the ARL,
values of the Frank copula on the Hotelling’s T?
control chart are less than the other copulas at
the shifts are 1.04, 1.08 and 1.1; the ARL, value
of the Clayton copula on the Hotelling’s T?
control chart is less than the other copulas at the

shift is 1.06.

8. Conclusions

The results presented two control charts
for dependence measures of two variables by
copulas modeling based on ARL property. The
ARL comparisons indicate that the Hotelling’s T2
control chart performs better than the DMEWMA
control chart for all shifts when the parameter
shifts are 1.02, 1.04, 1.06, 1.08, and 1.1. For
strong positive dependence (r=0.8), in the
case of one and two parameter shifts; the ARL,
values of the Normal copula on the Hotelling’s

T2 control chart are less than the other copulas
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for almost all shifts. For strong negative
dependence (T = —0.8), in the case of one and
two parameter shifts; the ARL, values of three
copulas on the Hotelling’s T? control chart are
less than the other copulas, but three types of

copulas would be more sensitive.
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