

# Performance Comparison of the Hotelling's T<sup>2</sup> and DMEWMA Control Charts Using Bivariate Copulas for Small Shifts

Sasigarn Kuvattana\*

*Applied Statistics, Basic Science, Maejo University, Phrae Campus, Maejsai, Rong Kwang, Phrae 54140*

**Received: September 18, 2019; Accepted: December 28, 2019**

---

## Abstract

Multivariate control charts are an important tool in statistical process control for identifying an out-of-control process. Most multivariate control charts were designed to assume that the observations are an independence and normal distribution, but it is not valid in practice. This paper proposes the copulas modeling for dependence and non-normal multivariate cases and compare bivariate copulas on Hotelling's T<sup>2</sup> and double multivariate exponentially weighted moving average (DMEWMA) control charts. Observations are from an exponential distribution with Monte Carlo simulation when the parameter shifts are 1.02, 1.04, 1.06, 1.08, and 1.1. The level of dependence of observations is measured by Kendall's tau as 0.8 and -0.8 for normal, Frank and Clayton copulas. The performance of control charts is based on the average run length (ARL) in each copula. The results show that in the case of one and two-parameter shifts, the performance of the Hotelling's T<sup>2</sup> is better than DMEWMA control chart for all modifications.

**Keywords:** ARL; copula; Hotelling's T<sup>2</sup>; DMEWMA; Monte Carlo simulation; exponential distribution

## 1. Introduction

Statistical process control (SPC) is an effective tool in simple manufacturing processes with only one process output variable or quality characteristic. In practice, most process monitoring and control scenarios involve more than one variable. A univariate control chart is the most type of SPC procedure for a single process characteristic. Multivariate methods that consider the variables jointly are required.

Multivariate statistical process control (MSPC) charts have been regarded as the multivariate extensions of the univariate charts (Montgomery, 2013). Several multivariate quality control charts have been proposed to monitor the quality characteristics. Most multivariate detection procedures are based on a multi-normality assumption and independence, but many processes assume non-normality and correlation.

Copulas approach is a representation by Sklar (1959 and 1973), which has become a popular tool for modeling non-linearity, asymmetrically, and tail dependence in several fields; it can be used in the study of dependence or association between random variables. The copulas can estimate the joint distribution of nonlinear outcomes and describe the dependence structure among variables through the joint distribution by eliminating the effect of univariate marginals. Bivariate copulas are the simplest case for the description of dependent random variables, and they can be used with control charts. Recent papers have applied copulas on control charts such as, Sukparungsee *et al.* (2018) proposed five types of copulas on the Hotelling's  $T^2$  control chart; Fatahi *et al.* (2011) studied the joint distribution of two correlated zero-inflated Poisson (ZIP) distributions using the copula function approach; Fatahi *et al.* (2012) develop a copula-based bivariate ZIP control chart which can be used for monitoring correlated rare events; Dokouhaki and Noorossana (2013) applied the Markov approach for modeling the auto-correlated data, and the copula approach is used making the joint distribution of two auto-correlated binary data series; Hrynewicz (2012) presented the concept of copulas to model dependencies of other types on Shewhart control charts for auto-correlated and normal data. Verdier (2013) proposed a new approach for the non-normal multivariate case and constructed a tolerance region obtained from a density level set estimation on the Hotelling's  $T^2$  control chart.

This paper presents a comparative performance of the Hotelling's  $T^2$  and double multivariate exponentially weighted moving average (DMEWMA) control charts when observations are from an exponential distribution with the mean shifts and use bivariate copulas for specifying dependence between random variables.

## 2. Hotelling's $T^2$ control chart

Suppose that  $\bar{\mathbf{X}}$  and  $\mathbf{S}$  are the sample mean vector and covariance of the matrix, respectively. Let  $m$  and  $p$  be the number of samples and the number of quality characteristics observed in each sample, respectively. The Hotelling's  $T^2$  statistic is  $T^2 = (\mathbf{X} - \bar{\mathbf{X}})' \mathbf{S}^{-1} (\mathbf{X} - \bar{\mathbf{X}})$  (1), where  $\bar{\mathbf{X}} = \frac{1}{m} \sum_{i=1}^m \mathbf{X}_i$  and  $\mathbf{S} = \frac{1}{m-1} \sum_{i=1}^m (\mathbf{X} - \bar{\mathbf{X}})(\mathbf{X} - \bar{\mathbf{X}})'$ .

Statistical process control is usually split into two phases (Montgomery, 2013). Phase I constitutes a retrospective analysis, constructing trial control limits to determine if the process has been in control. Once this is achieved, the controlled data are used in Phase II to monitor the process. The control chart has a centerline representing the average value of the quality characteristic corresponding to the in-control process. Two other horizontal lines, called the upper control limit (UCL) and the lower control limit (LCL), are shown on the chart.

For phase I, the control limits are

$$UCL = \frac{(m-1)^2}{m} \beta_{\alpha, p/2, (m-p-1)/2} \quad \text{and} \quad LCL = 0$$

where  $\beta_{\alpha, p/2, (m-p-1)/2}$  is an upper  $\alpha$  percentage point of beta distribution with parameters  $p/2$  and  $(m-p-1)/2$  (Bersimis *et al.*, 2007). For the phase II control limits for this statistic are  $UCL = \frac{p(m+1)(m-1)}{m^2 - mp} F_{\alpha, p, (m-p)}$

and  $LCL=0$  where  $F_{\alpha, p, (m-p)}$  is  $F$  distribution with parameters  $p$  and  $(m-p)$ . Note that this article will mostly focus on Phase II control charts and their performance.

### 3. Double multivariate exponentially weighted moving average control chart (DMEWMA)

Suppose that  $\mathbf{x}_1, \mathbf{x}_2, \dots$  are  $p \times 1$  random vectors each representing the  $p$ -variate normal distribution  $N(\mu_0, \Sigma_0)$ , with mean vector  $\mu_0$  and variance-covariance matrix  $\Sigma_0$  for in-control. The MEWMA statistic  $\mathbf{y}_i$  and  $\mathbf{z}_i$  for  $i = 1, 2, \dots$ ; which is written by  $\mathbf{y}_i = \Lambda \mathbf{x}_i + (\mathbf{I} - \Lambda) \mathbf{y}_{i-1}$  (2) and  $\mathbf{z}_i = \Lambda \mathbf{y}_i + (\mathbf{I} - \Lambda) \mathbf{z}_{i-1}$  (3) where  $\mathbf{z}_0 = \mathbf{0}$  and  $\Lambda$  is a diagonal matrix with entries  $\lambda_1, \dots, \lambda_p$ . The first equation in (2) is just the MEWMA statistic  $\mathbf{y}_i$  calculated from  $\mathbf{x}_i$  and the second equation in (3) is the MEWMA statistic  $\mathbf{z}_i$  calculated from  $\mathbf{y}_i$ . The original data  $\mathbf{x}_i$  is double smoothed, such that  $\mathbf{z}_i$  is called the DMEWMA statistics, with  $\Lambda = \lambda \mathbf{I}, 0 \leq \lambda \leq 1$  and  $\mathbf{y}_0 = \mathbf{z}_0 = \mathbf{\mu}_0$ . The DMEWMA control chart statistics  $T_{di}^2$  is  $T_{di}^2 = \mathbf{z}_i' \sum_{\mathbf{Z}_i}^{-1} \mathbf{z}_i$  (4) where  $\sum_{\mathbf{Z}_i}^{-1}$  is the inverse of the exact variance-covariance matrix of  $\mathbf{z}_i$ , and  $\sum_{\mathbf{Z}_i} = \frac{\lambda^2 [(1-\lambda)^2 - (i+1)^2(1-\lambda)^2 + (2i^2 + 2i - 1)(1-\lambda)^{2i^2} - i^2(1-\lambda)^{2i^2}]}{[1 - (1-\lambda)^2]^2} \sum$  (5)

let  $i \rightarrow \infty$ , the asymptotic variance-covariance matrix is:  $\sum_{\mathbf{Z}_i} = \frac{\lambda(2-2\lambda+\lambda^2)}{(2-\lambda)^3} \sum_0$  (6) if  $T_{di}^2 > h$  then the signal gives an out-of-control, where  $h$  is the control limit (Alkahtani and Schaeffer, 2012; Abdella *et al.*, 2018).

## 4. Copulas modeling

Copulas introduced by Sklar (see Sklar, 1959). According to Sklar's theorem for a bivariate case, let  $X$  and  $Y$  be continuous random variables with joint distribution function  $H$  and marginal cumulative distribution  $F(x)$  and  $F(y)$ , respectively. Then  $H(x, y) = C(F(x), F(y); \theta)$  with a copula  $C : [0, 1]^2 \rightarrow [0, 1]$ , where  $\theta$  is a parameter of the copula called the dependence parameter, which measures dependence between the marginals. For the purposes of the statistical method, it is desirable to parameterize the copula function. Let  $\theta$  denote the association parameter of the bivariate distribution, and there exists a copula  $C$ . Then  $F(x) = u$  and  $F(y) = v$ , where  $u$  and  $v$  are uniformly distributed variates (Trivedi and Zimmer, 2005). The copulas function has two families as follows:

### 4.1 Elliptical copulas

Elliptical copulas are simply the copulas of elliptical distributions. Simulation from elliptical distributions is easy, and as a consequence of Sklar's Theorem is a simulation from elliptical copulas. Two common elliptical copulas are the Gaussian (normal) and Student's t distributions. Each of these copulas can be extended to  $d$ -dimensional space, but

this paper only focuses on the Normal copula. The Normal copula is an elliptical copula is defined as:  $C(u, v; \theta) = \Phi_N(\Phi^{-1}(u), \Phi^{-1}(v); \theta)$ ;  $-1 \leq \theta \leq 1$  (7) where  $\Phi_N(u, v)$  is the cumulative probability distribution function of the bivariate normal distribution,  $\Phi^{-1}(u)$  and  $\Phi^{-1}(v)$  are the inverse of the cumulative probability function of the univariate normal distribution.

## 4.2 Archimedean copulas

Let  $\Phi$  be a class of continuous, strictly decreasing functions  $\phi: [0, 1] \rightarrow [0, \infty]$  such that  $\phi(1) = 0$ ,  $\phi'(t) < 0$  and  $\phi''(t) > 0$  for all  $0 < t < 1$  (Nelsen, 2006; Genest and McKay, 1986; Genest and Rivest, 1993). These are two types of Archimedean copulas generated as follows:

### 4.2.1 Frank Copula

$$C(u, v; \theta) = -\frac{1}{\theta} \ln \left( 1 + \frac{(e^{-\theta u} - 1)(e^{-\theta v} - 1)}{e^{-\theta} - 1} \right), \quad (8)$$

where  $\phi(t) = -\ln \left( \frac{e^{-\theta t} - 1}{e^{-\theta} - 1} \right)$ ;  $\theta \in (-\infty, \infty) \setminus 0$ .

### 4.2.2 Clayton copula

$$C(u, v; \theta) = \left[ \max(u^{-\theta} + v^{-\theta} - 1, 0) \right]^{1/\theta}, \quad (9)$$

where  $\phi(t) = (t^{-\theta} - 1) / \theta$ ;  $\theta \in (-1, \infty) \setminus 0$ .

## 5. Dependence measures for data

Generally, a parametric measure of the linear dependence between random variables is the correlation coefficient, and nonparametric measures of dependence are Spearman's rho and Kendall's tau. According to the earlier literature, copulas can be used to study dependence or association between random variables. The values of Kendall's tau are easy to calculate, so this measure is used for observation dependencies.

Let  $X$  and  $Y$  be continuous random variables whose copula is  $C$  then Kendall's tau for  $X$  and  $Y$  is given by  $\tau_c = 4 \iint_{\mathbb{I}^2} C(u, v) dC(u, v) - 1$  where  $\tau_c$  is Kendall's tau of copula  $C$  and the unit square  $\mathbb{I}^2$  is the product  $\mathbb{I} \times \mathbb{I}$  where  $\mathbb{I} = [0, 1]$  and the expected value of the function  $C(u, v)$  of uniform  $(0, 1)$  random variables  $U$  and  $V$  whose joint distribution function is  $C$ , i. e.,  $\tau_c = 4E[C(U, V)] - 1$ .

Genest and McKay (1986) considered Archimedean copula  $C$  generated by  $\phi$ , then  $\tau_{Arch} = 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} dt + 1$  where  $\tau_{Arch}$  is Kendall's tau of Archimedean copula  $C$ .

### 5.1 Normal copula

$$\tau = \frac{\arcsin(\theta)}{\pi/2}; \quad \theta \in [-1, 1] \quad (10)$$

#### 5.1.1 Frank copula

$$\tau = 1 + \frac{4 \left( \frac{1}{\theta} \int_0^{\theta} \frac{t}{e^t - 1} dt - 1 \right)}{\theta}; \quad \theta \in (-\infty, \infty) \setminus \{0\} \quad (11)$$

#### 5.1.2 Clayton copula

$$\tau = \frac{\theta}{\theta + 2}; \quad \theta \in [-1, \infty) \setminus \{0\} \quad (12)$$

## 6. Performance of control charts

The basic characteristic that describes control charts' performance is the Average Run Length (ARL), which is the average number of points that must be plotted before a point indicates an out-of-control. ARL is classified into  $ARL_0$  and  $ARL_1$ , where  $ARL_0$  is the Average Run Length when the process is in-control and  $ARL_1$  is the Average Run Length when the process is out-of-control.

In this paper, we use a Monte Carlo simulation in R statistical software (Mächler and Zurich, 2011-2012; Yan, 2007) with the number of simulation runs 50,000 and sample sizes 1,000. Observations were from an exponential distribution with in-control parameter  $\alpha = 1$ .

The shift size is reported in terms of the quantity  $\delta = \mu - \mu_0$  and large values of  $\delta$  correspond to bigger shift in the mean. The value  $\delta = 0$  and the process mean  $\mu = 1$  are in-control. The process means are 1.02, 1.04, 1.06, 1.08, and 1.1 for out-of-control.

The simulation results were carried out to evaluate the performance of the Hotelling's  $T^2$  control chart, and the DMEWMA control chart with  $\lambda = 0.05$ . Copulas estimations are

restricted to the cases of positive and negative dependence. For all copula models, the setting  $\theta$  corresponds with Kendall's tau. The level of dependence is measured by Kendall's tau values ( $-1 \leq \tau \leq 1$ ) which are defined to 0.8 and -0.8, respectively.

## 7. Numerical results

The results are presented in Tables 1-4, and the different values of exponential parameters denote  $\mu_1$  for the variables  $X$  and  $\mu_2$  for the variables  $Y$ . For in-control, control charts were chosen by setting the desired  $ARL_0 = 370$  for each copula. Tables 1-2 show strong positive dependence ( $\tau = 0.8$ ) and Tables 3-4 show strong negative dependence ( $\tau = -0.8$ ).

**Table 1**  $ARL_0$  and  $ARL_1$  values of control charts with Kendall's tau equal to 0.8 in the case of one parameter shifts at  $\mu_1$  or  $\mu_2$ .

| Parameters shifts |         | Types of control charts |                |         |         |         |         |  |
|-------------------|---------|-------------------------|----------------|---------|---------|---------|---------|--|
|                   |         | Hotelling's $T^2$       |                |         | DMEWMA  |         |         |  |
| $\mu_1$           | $\mu_2$ | Normal                  | Frank          | Clayton | Normal  | Frank   | Clayton |  |
| 1                 | 1       | 369.873                 | 370.159        | 370.009 | 369.739 | 370.036 | 369.904 |  |
| 1                 | 1.02    | 355.470                 | <b>352.910</b> | 356.129 | 358.012 | 356.476 | 359.604 |  |
| 1                 | 1.04    | <b>336.555</b>          | 340.471        | 343.186 | 344.642 | 340.732 | 344.840 |  |
| 1                 | 1.06    | <b>320.981</b>          | 328.888        | 329.263 | 330.497 | 328.521 | 332.529 |  |
| 1                 | 1.08    | <b>304.142</b>          | 315.771        | 314.523 | 316.389 | 314.808 | 316.656 |  |
| 1                 | 1.1     | <b>286.338</b>          | 301.977        | 299.246 | 304.480 | 301.490 | 302.728 |  |
| 1                 | 1       | 369.873                 | 370.159        | 370.009 | 369.739 | 370.036 | 369.904 |  |
| 1.02              | 1       | <b>353.405</b>          | 354.389        | 355.886 | 359.709 | 358.398 | 358.315 |  |
| 1.04              | 1       | <b>338.413</b>          | 344.341        | 344.282 | 344.070 | 343.506 | 342.606 |  |
| 1.06              | 1       | <b>319.972</b>          | 329.466        | 329.822 | 328.720 | 326.768 | 331.008 |  |
| 1.08              | 1       | <b>303.122</b>          | 316.329        | 314.385 | 315.598 | 314.321 | 315.439 |  |
| 1.1               | 1       | <b>287.430</b>          | 300.675        | 299.802 | 303.648 | 300.635 | 300.328 |  |

The result in Table 1 shows the mean shifts of when is fixed at 1, for the parameter shift = 1.02, the ARL1 value of the Frank copula on the Hotelling's T2 control chart is

less than the other copulas; and the other shifts, the ARL1 values of the Normal copula on the Hotelling's T2 control chart are less than the other copulas. When is fixed at 1, the

**Table 2** ARL<sub>0</sub> and ARL<sub>1</sub> values of control charts with Kendall's tau equal to 0.8 in the case of two parameter shifts at  $\mu_1$  and  $\mu_2$ .

| Parameters shifts |         | Type of control charts     |         |         |         |         |         |
|-------------------|---------|----------------------------|---------|---------|---------|---------|---------|
|                   |         | Hotelling's T <sup>2</sup> |         |         | DMEWMA  |         |         |
| $\mu_1$           | $\mu_2$ | Normal                     | Frank   | Clayton | Normal  | Frank   | Clayton |
| 1                 | 1       | 369.873                    | 370.159 | 370.009 | 369.739 | 370.036 | 369.904 |
| 1.02              | 1.02    | <b>339.930</b>             | 344.763 | 343.462 | 346.905 | 346.749 | 345.967 |
| 1.04              | 1.04    | <b>313.508</b>             | 322.770 | 317.983 | 325.373 | 320.750 | 321.439 |
| 1.06              | 1.06    | <b>288.406</b>             | 298.431 | 296.771 | 301.847 | 298.082 | 302.819 |
| 1.08              | 1.08    | <b>266.017</b>             | 280.742 | 274.405 | 283.412 | 279.967 | 279.428 |
| 1.1               | 1.1     | <b>245.511</b>             | 259.140 | 254.223 | 266.924 | 261.138 | 260.614 |

**Table 3** ARL<sub>0</sub> and ARL<sub>1</sub> values of control charts with Kendall's tau equal to -0.8 in the case of one parameter shifts at  $\mu_1$  or  $\mu_2$ .

| Parameters shifts |         | Type of control charts     |                |                |         |         |         |
|-------------------|---------|----------------------------|----------------|----------------|---------|---------|---------|
|                   |         | Hotelling's T <sup>2</sup> |                |                | DMEWMA  |         |         |
| $\mu_1$           | $\mu_2$ | Normal                     | Frank          | Clayton        | Normal  | Frank   | Clayton |
| 1                 | 1       | 370.012                    | 369.959        | 370.109        | 370.030 | 369.968 | 369.841 |
| 1                 | 1.02    | 356.011                    | 356.207        | <b>354.420</b> | 358.121 | 358.255 | 356.991 |
| 1                 | 1.04    | 341.964                    | 341.236        | <b>338.637</b> | 343.603 | 344.349 | 343.688 |
| 1                 | 1.06    | 325.497                    | 325.807        | <b>323.094</b> | 330.954 | 328.921 | 329.797 |
| 1                 | 1.08    | 312.953                    | <b>311.910</b> | 312.068        | 318.684 | 315.088 | 319.627 |
| 1                 | 1.1     | 300.119                    | 296.065        | <b>296.004</b> | 305.383 | 305.584 | 305.930 |
| 1                 | 1       | 370.012                    | 369.959        | 370.109        | 370.030 | 369.968 | 369.841 |
| 1.02              | 1       | <b>356.399</b>             | 356.833        | 356.942        | 357.208 | 356.907 | 357.052 |
| 1.04              | 1       | 342.439                    | <b>341.682</b> | 342.127        | 342.793 | 342.144 | 343.917 |
| 1.06              | 1       | 325.547                    | 329.568        | <b>324.481</b> | 332.379 | 331.893 | 329.941 |
| 1.08              | 1       | <b>310.445</b>             | 311.245        | 312.284        | 317.710 | 316.308 | 319.074 |
| 1.1               | 1       | 297.094                    | <b>297.005</b> | 299.235        | 305.751 | 303.375 | 305.368 |

**Table 4** ARL<sub>0</sub> and ARL<sub>1</sub> values of control charts with Kendall's tau equal to -0.8 in the case of two parameter shifts at  $\mu_1$  and  $\mu_2$ .

| Parameters shifts |         | Type of control charts     |                |                |         |         |         |  |
|-------------------|---------|----------------------------|----------------|----------------|---------|---------|---------|--|
|                   |         | Hotelling's T <sup>2</sup> |                |                | DMEWMA  |         |         |  |
| $\mu_1$           | $\mu_2$ | Normal                     | Frank          | Clayton        | Normal  | Frank   | Clayton |  |
| 1                 | 1       | 370.012                    | 369.959        | 370.109        | 370.030 | 369.968 | 369.841 |  |
| 1.02              | 1.02    | <b>343.269</b>             | 344.380        | 344.000        | 345.630 | 343.936 | 344.504 |  |
| 1.04              | 1.04    | 318.851                    | <b>317.002</b> | 317.303        | 321.720 | 321.080 | 321.481 |  |
| 1.06              | 1.06    | 293.561                    | 293.140        | <b>290.101</b> | 300.171 | 298.786 | 301.591 |  |
| 1.08              | 1.08    | 272.739                    | <b>268.715</b> | 270.753        | 280.218 | 278.643 | 279.727 |  |
| 1.1               | 1.1     | 252.297                    | <b>249.462</b> | 250.027        | 262.172 | 260.552 | 262.442 |  |

ARL<sub>1</sub> values of the Normal copula on the Hotelling's T<sup>2</sup> control chart are less than the other copulas for all shifts. Table 2 shows two-parameter shifts of the ARL<sub>1</sub> values of the Normal copula on the Hotelling's T<sup>2</sup> control chart are less than the other copulas for all shifts.

Table 3 shows the mean shifts of  $\tau = -0.8$  when  $\mu_1$  is fixed at 1, for the parameter shifts  $\mu_2 = 1.02, 1.04, 1.06$ , and 1.1; the ARL<sub>1</sub> values of the Clayton copula on the Hotelling's T<sup>2</sup> control chart are less than the other copulas; except for the shift  $\mu_2 = 1.08$ , the ARL<sub>1</sub> value of the Frank copula on the Hotelling's T<sup>2</sup> control chart is less than the other copulas. When  $\mu_2$  is fixed at 1, the ARL<sub>1</sub> values of the Normal copula on the Hotelling's T<sup>2</sup> control chart are less than the other copulas at  $\mu_1 = 1.02$  and 1.08; the ARL<sub>1</sub> values of the Frank copula on the Hotelling's T<sup>2</sup> control chart are less than the other copulas at  $\mu_1 = 1.04$  and 1.1; and the ARL<sub>1</sub> value of the Clayton copula on the Hotelling's T<sup>2</sup> control chart is less than the other copulas at  $\mu_1 = 1.06$ .

Table 4 shows two-parameter shifts of  $\tau = -0.8$ , the ARL<sub>1</sub> value of the Normal copula on the Hotelling's T<sup>2</sup> control chart is less than the other copulas at the shift is 1.02; the ARL<sub>1</sub> values of the Frank copula on the Hotelling's T<sup>2</sup> control chart are less than the other copulas at the shifts are 1.04, 1.08 and 1.1; the ARL<sub>1</sub> value of the Clayton copula on the Hotelling's T<sup>2</sup> control chart is less than the other copulas at the shift is 1.06.

## 8. Conclusions

The results presented two control charts for dependence measures of two variables by copulas modeling based on ARL property. The ARL comparisons indicate that the Hotelling's T<sup>2</sup> control chart performs better than the DMEWMA control chart for all shifts when the parameter shifts are 1.02, 1.04, 1.06, 1.08, and 1.1. For strong positive dependence ( $\tau = 0.8$ ), in the case of one and two parameter shifts; the ARL<sub>1</sub> values of the Normal copula on the Hotelling's T<sup>2</sup> control chart are less than the other copulas

for almost all shifts. For strong negative dependence ( $\tau = -0.8$ ), in the case of one and two parameter shifts; the ARL<sub>1</sub> values of three copulas on the Hotelling's T<sup>2</sup> control chart are less than the other copulas, but three types of copulas would be more sensitive.

## 9. Acknowledgements

This paper was partially supported by the grants project from Maejo University, Phrae Campus, in 2018.

## 10. References

Abdella, G. M. , Al-Khalifa, N. K. and Hamouda, A. M. , 2018, The performance assessment for the dMEWMA in capturing changes in simple linear profiles, pp. 1591- 1606, International Conference on Industrial Engineering and Operations Management, Washington, DC.

Alkahtani, S. and Schaffer, J. , 2012, A double Multivariate Exponentially Weighted moving average (dMEWMA) control chart for a process location monitoring, Commun. Stat. Simulat. 41: 1-15.

Bersimis, S. , Psarakis, S. and Panaretos, J. , 2007, Multivariate statistical process control charts: An overview, Qual. Reliab. Eng. Int. 23: 517-543.

Dokouhaki, P. and Noorossana, R. , 2013, A copula Markov CUSUM chart for monitoring the bivariate auro- correlated binary observation, Qual. Reliab. Eng. Int. 29: 911-919.

Fatahi, A.A., Dokouhaki, P. and Moghaddam, B.F., 2011, A bivariate control chart based on copula function, pp. 292- 296, IEEE International Conference on Quality and Reliability (ICQR), Bangkok.

Fatahi, A. A. , Noorossana, R. , Dokouhaki, P. and Moghaddam, B. F. , 2012, Copula-based bivariate ZIP control chart for monitoring rare events, Commun. Stat. Theor. M. 41: 2699-2716.

Genest, C. and MacKay, J. , 1986, The joy of copulas: bivariate distributions with uniform marginal, Am. Sat. 40: 280-283.

Genest, C. and Rivest, L. P. , 1993, Statistical inference procedures for bivariate Archimedean copulas, J. Am. Stat. Assoc. 88: 1034-1043.

Hryniewicz, O. , 2012, On the robustness of the Shewhart control chart to different types of dependencies in data, Front. Stat. Qual. Contr. 10: 20-33.

Khoo, B.C., Atta, M.A. and Phua, H.N., 2009, A study on the performances of MEWMA and MCUSUM charts for skewed distributions, pp. 817- 822, 10th Islamic Countries Conference on Statistical Science, Cairo.

Kuvattana, S., Sukparungsee, S., Busababodhin, P. and Areepong, Y. , 2018, Bivariate copulas on the Hotelling's T<sup>2</sup> control chart, Commun. Stat. Simulat. 47: 413-419.

Machler, M. and Zurich, E. , 2011, Numerically stable Frank copula functions via multiprecision: R package Rmpfr, Available Source: <http://cran.r-project.org/web/packages/copula/vignettes/ Frank- Rmpfr. pdf>, March 1, 2016.

Montgomery, D. C. , 2013, Statistical Quality Control: A Modern Introduction, 7th Ed. , John Wiley & Sons, Singapore.

Nelsen, R. B. , 2006, An introduction to copulas, 2nd Ed, Springer, New York.

Sklar, A. ,1959, Fonctions de repartition a n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8: 229-231.

Sklar, A. , 1973, Random variables, joint distributions, and copulas, Kybernetica 9: 449-460.

Trivedi, P. K. , and Zimmer, D. M. , 2005, Copula Modeling: An Introduction for Practitioners, Foundations and Trends in Econometrics.

Verdier, G. , 2013, Application of copulas to multivariate control charts, J. Stat. Plan. Infer. 143: 2151-2159.

Yan, J. , 2007, Enjoy the joy of copulas: With a package copula, J. Stat. Softw. 21: 1-21.