อิทธิพลของความสูงการตัดและระยะปลูกที่รองรับการใช้เครื่องจักรในการเก็บเกี่ยวกระถินยักษ์ภายใต้พื้นที่ดินทรายและเค็มเพื่อใช้เป็นพลังงานทดแทน

Main Article Content

นพ ตัณมุขยกุล
เอ็จ สโรบล
ทรงยศ โชติชุติมา
ปิยะ ดวงพัตรา
นิคม แหลมสัก

Abstract

This study aimed to determine suitable Leucaena leucocephala cutting height and plant spacing for machine harvest under sandy saline soil for renewable energy to reduce field production cost. The experimental design was split-plot in Randomized Complete Block Design with 4 replications. The main plot was 3 levels of cutting height (5,10 and 15 cm. from the ground surface). The sub plot was 4 plant spacing ((50x50)x150, (75x75)x150, 50x200 and 100x200 cm.). The results showed that there was no difference in plant height among all treatment where the average plant height at 12 months was 344.46 cm. Furthermore the cutting height did not in fluent to dry matter yield of leucaena, while the (50x50)x150 cm. plant spacing promoted the highest (p<0.05) dry matter yield at 3,308.34 kg rai-1. Next, the leucaena wood from energy treatment had similar chloride (0.18%), ash content (1.78%) and heat value (17.93 MJ kg–1) which pass the critical biomass fuel standard. Finally, the leucaena can be grown under saline soil with low cutting height and narrow double rows spacing for machine harvest.

Downloads

Download data is not yet available.

Article Details

Section
วิทยาศาสตร์ชีวภาพ

References

Abrahamson, L.P., Volk, T.A., Kopp, R.F., White, E.H. and Ballard, J.L., 2002, Willow Biomass Producer’s Handbook, State University of New York, New York.
Bunyavejchewin, S., 1984, The relationship between planting distance and growth, above-ground biomass and firewood production in Leucaena leucocephala de Wit at Sakaerat, Pak thong chai, Nakhon Ratchasima, Thai Journal of Forestry. 4(3): 307–320. (in Thai)
Chotchutima, S., 2013, Effects of Spacing, Cutting Height and Cutting Frequency on Yield, Yield Component and Chemical Component of Leucaena (Leucaena leucocephala (Lam.) de Wit.) for Renewable Energy, Doctoral Dissertation, Kasetsart University, Bangkok, 151 p. (in Thai)
Chotchutima, S., Kangvansaichol, K., Tudsri, S. and Sripichitt, P., 2013, Effect of spacing on growth, biomass yield and quality of Leucaena (Leucaena leucocephala (Lam.) de Wit.) for renewable energy in Thailand, Journal of Sustainable Bioenergy Systems. 2013(3): 48–56.
Dimitriou, I. and Rutz, D., 2015, Sustainable Short Rotation Coppice: A Handbook, WIP Renewable Energies, Munich.
FAO, 1976, Prognosis of salinity and alkalinity, FAO Soil Bulletin 31, Rome.
Lewandowski, I. and kicherer, A., 1997, Combustion quality of biomass: practical relevance and weperiments to modify the biomass quality of Miscanthus x giganteus, Eur. J. Agron. 6: 163–177.
Ministry of Energy, 2011, Biomass Energy, Energy policy and planning office, Ministry of Energy, Bangkok, 90 p. (in Thai)
Montes, C.S., da Silva, D.A., Garcia, R.A., de Muniz, G.I.B. and Weber, J.C., 2011, Calorific wood density and rainfall gradients in the West African Sahel, Biomass Bioenerg. 35: 346–353.
Philippine Council for Agriculture and Resources Research and United States National Academy of Sciences, 1977, Leucaena: Promising Forage and Tree Crop for the Tropics, National Academy of Sciences, Washington, D.C.
Nielsena, H.P., Frandsena, F.J., Dam–Johansena, K. and Baxterb, L.L., 2000, The implications of chlorine–associated corrosion on the operation of biomass–fired boilers, Prog. Energ. Combust. 26: 283–298.
Proe, M., Craig, J. and Griffiths, J., 2002, Effects of spacing, species and coppicing on leaf area, light interception and photosynthesis in short rotation forestry, Biomass Bioenerg. 23(5): 315¬¬–326.
Sripongpakapun, K., 2011, Growth and Biomass Production of Five Varieties/Lines of Leucaena (Leucaena leucocephala (Lam.) de Wit.) after Three Years of Establishment for Sustainable Energy Application, Master Thesis, Kasetsart University, Bangkok, 115 p. (in Thai)
Tudsri, S., Ishii, Y. and Numaguchi, H., 2002, Yield and quality tree grass species intercropped with Leucaena leucocephala, J. ISSAAS. 7: 83–90.
Tudsri, S., Sripichitt, P., Wongsuwan, N. and Nakmanee., K., 2009, Leucaena biomass production for sustainable renewable energy, National Research Council of Thailand, Bangkok, 140 p. (in Thai)
Tudsri, S., Kangwansaichol, K. and Butnak, S., 2017, Leucaena: Sustainable Renewable Energy Crop, 1st Ed., PS. Print Printing House, Nonthaburi, 107 p. (in Thai)
USDA, 1998, Soil Quality Indicators: pH, Available Source: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052208.pdf, September 22, 2020.