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Abstract

The objective of this research is to compare the efficiency of coefficient parameter
estimation by using penalized regression analysis on five methods namely the ridge regression, the
lasso regression, the elastic net regression, the adaptive lasso regression, and the adaptive elastic
net regression methods. This research uses the multiple linear regression model, which is consisted
of a dependent variable and independent variables. In case the number of independent variables
is larger than number of sample sizes called high-dimensional data. For comparison the efficiency
of five methods, the criterion is based on the average mean square errors. The data of this research
is simulated by the small sample sizes (n = 5, 10, and 15) when the number of independent
variables is specified by 16. For medium sample sizes (n = 20, 30, and 40), the number of
independent variables is specified by 50. For large sample sizes (n = 60, 70, and 80), the number
of independent variables is defined 100. The independent variable distribution is generated from
the normal distribution, and the residuals are generated from the normal distribution, contaminated
normal distribution, and Weibull distribution The data are obtained through simulation using a
Monte Carlo technique with 1,000 replications for each case. The results are found that the adaptive
elastic net regression is the minimum average mean square error in all cases. Furthermore, we
apply five methods for real data based on the small sample sizes when the number of independent
variables is considered on 16. The results of real data show that the adaptive elastic net regression

outperforms the other methods as the simulation data.

Keywords: ridge regression method; lasso regression method; elastic net regression method;

adaptive lasso regression method; adaptive elastic net regression method
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Table 1 The descriptions of independent variables (X) and dependent variable (y) of building

residential apartments data set in Tehran, Iran (2018)

Variables

Descriptions

Units

X, Lot area

square meter (m?)

Total preliminary estimated construction cost based on the prices

X, 10,000,000 IRR
at the beginning of the project
Preliminary estimated construction cost based on the prices at

X, 10,000 IRR
the beginning of the project
Equivalent preliminary estimated construction cost based on the

X, 10,000 IRR
prices at the beginning of the project in a selected base year

X5 Duration of construction month

X |Price of the unit at the beginning of the project per m’ 10,000 IRR

city/municipality

Total floor areas of building permits issued by the

square meter (m?)

s |Cumulative liquidity

10,000,000 IRR

X9 Private sector investment in new buildings

10,000,000 IRR

10 |The interest rate for loan in a time resolution

percentage (%)

The average construction cost of buildings by private sector at

Xy 10,000 IRR/m?
the time of completion of construction
The average of construction cost of buildings by private sector at )

X, 10,000 IRR/m
the beginning of the construction

X3 |Official exchange rate with respect to dollars IRR

X, [Nonofficial (street market) exchange rate with respect to dollars IRR

Xz [Population of the city People

X;s |Gold price per ounce IRR
Actual sales prices 10,000 IRR

y
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Table 2 AMSE of the normal distribution (N(u,0°)), sample sizes (n), the number of

independent variables (p) of ridge, lasso, elastic net, Alasso, and Aelastic net methods

Methods
The Residuals p n - ) .
Ridee Lasso Elastic net Alasso Aelastic net

5 33.9256 26.9874 22.4558 7.7025 3.3780

16 | 10 | 37.7946 16.6173 13.5643 6.5365 3.6406

15 | 38.9704 7.5894 5.8060 4.1797 2.7336

20 | 96.2498 70.4524 61.0480 16.5131 7.6294

N (0,1) 50 | 30 | 101.6025 | 44.2040 34.1240 11.1575 5.6076
40 | 106.7399 | 22.5958 14.0320 7.2192 3.7383

60 | 181.1241 | 86.9848 59.0713 12.8314 7.6452

100 | 70 | 186.1973 | 49.0954 35.2171 8.4384 4.8927

80 | 190.5646 | 28.7975 19.8804 6.0043 3.3205

5 39.1396 35.3612 29.3117 9.4488 4.1393

16 | 10 | 43.6695 22.1339 18.5876 8.0446 4.6192

15 | 46.2458 12.8152 10.0233 6.0954 4.0198

20 | 93.8416 70.0297 58.5286 16.8798 7.6230

N (0,9) 50 | 30 | 101.2664 | 45.8974 34.0036 10.8726 6.0087
40 | 105.3065 | 21.4300 14.2404 6.0439 3.5356

60 | 184.7577 | 93.3526 72.0972 14.2818 8.2960

100 | 70 | 190.6009 | 57.6322 37.4456 9.2522 5.4729

80 | 194.1427 | 39.8798 24.6886 6.7811 5.1945

Bold text meaning the lowest AMSE of penalized regression methods in each case
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Table 3 AMSE of the contaminated normal distribution with percent and variance (622) of
contaminated data, sample sizes (n), the number of independent variables (p) of ridge,

lasso, elastic net, Alasso, and Aelastic net methods

Methods
The Residuals p . : : :
Ridee Lasso Elastic net Alasso Aelastic net
5 35.0811 31.0671 24.7741 8.4406 3.6405
16 | 10 | 38.9817 16.7417 13.8955 6.2428 3.6534
15 | 41.0874 9.1498 6.9239 4.0533 3.1888
. 20 | 96.8406 73.9534 64.6146 17.6593 7.7842
01220 215 50 | 30 | 102.9568 | 44.0060 34.0947 10.2773 6.0346
40 | 105.9625 | 23.7546 17.1172 7.0021 3.8908
60 | 182.8232 | 83.6694 61.6271 12.4524 8.6602
100 | 70 | 187.1082 | 52.7917 38.6351 8.7435 5.6113
80 | 190.7047 | 35.7055 22.9899 6.7027 4.9833
5 38.8782 33.3775 27.6338 8.7207 3.9104
16 | 10 | 44.2320 22.5650 19.9547 8.0482 4.7798
15 | 47.3983 14.2904 11.8839 6.6052 4.7059
. 20 | 96.2471 69.3985 59.6544 17.5066 7.6667
O'izoz/olyoo 50 | 30 | 102.8508 | 46.1801 33.6662 10.8649 5.5765
40 | 106.1674 | 22.1053 14.9190 6.2030 3.8285
60 | 186.8187 | 96.7751 71.6475 12.9031 9.4370
100 | 70 | 191.2204 | 59.5943 42.4976 11.1551 5.9500
80 | 1957240 | 42.7192 26.4030 7.0348 5.0815

Bold text meaning the lowest AMSE of penalized regression methods in each case

AN 2-4 WUIIIB ridge L DUUA 15 Aelastic net Trntad sarunan
faege (n) WNT aglvirndsanueainiow wdeuiIdsEesade (AMSE) dviga lunnauie
A18980912a 8 (AMSE) 1 UTUA1Y danAaodiy A18ee (n) MNIIUAIWUTEATE (p) wazyNA

31U798v83 Thongteeraparp [16] U35 lasso AINNAAIALAG BUVDIAILUUNITONNDELT LAY

78 elastic net 35 Alasso Uagds Aelastic net ille  WYAMNLNITUINKAIUIAA N1TUANLIIUTNA
YUIAR0819 (n) Ty zliaad sadu Uaoudu wagn1suanukatliya
AANALARDUNAIADLARY (AMSE) finag 4.2 waandayaass
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Table 4 AMSE of the Weibull distribution (W (&, £)) , sample sizes (n), the number of independent

variables (p) of ridee, lasso, elastic net, Alasso, and Aelastic net methods

Methods
The Residuals p n - X .
Ridge Lasso Elastic Net ALasso AElastic Net
5 33.0417 28.2946 229671 8.0242 3.5182
16 10 37.0135 15.6834 12.7651 5.7262 3.4748
15 39.122 7.0851 5.1782 3.713 2.5124
20 95.5383 71.9751 61.5638 18.3407 7.788
W (1,1.5) 50 | 30 | 100.6384 46.5271 35.2927 11.0467 5.9334
40 | 106.0123 25.3405 15.4053 6.4533 4.2603
60 | 181.1241 86.9848 59.0713 12.8314 7.6452
100 | 70 | 186.1973 49.0954 35.2171 8.4384 4.8927
80 | 190.5646 | 28.7975 19.8804 6.0043 3.3205
5 33.6305 30.1172 24.1374 8.5887 3.6626
16 | 10 | 37.0765 16.2172 12.9472 6.0041 3.4910
15 | 38.1400 7.3388 4.8485 3.5092 2.1785
20 | 959776 73.5361 58.7985 18.3416 7.6663
W(1,3) 50 | 30 | 101.5208 43.7559 33.5337 10.2491 5.9679
40 | 106.2578 21.6254 15.1425 5.8569 3.4669
60 | 185.3214 91.2636 68.1079 13.8273 8.1367
100 | 70 | 190.7263 64.2791 47.5868 10.5184 6.3380
80 | 194.3859 | 35.3487 23.3838 7.1841 4.4780

Bold text meaning the lowest AMSE of penalized regression methods in each case

Table 5 MSE of building residential apartments data set in Tehran, Iran (2018) with sample sizes

(n) of ridge, lasso, elastic net, Alasso, and Aelastic net methods

Methods
Sample sizes (n)
Ridge Lasso Elastic net Alasso Aelastic net
n=5 104,678.60 105,560.00 105,560.00 39,850.79 4,053.28
n=10 194,735.60 152,793.90 135,290.40 51,930.01 3,492.19
n=15 162,579.30 200,074.90 207,856.10 | 59,951.53 5,283.75

Bold text meaning the lowest AMSE of penalized regression methods in each case
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