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Abstract
This research intends to compare the classification performance of re-hospitalization of
diabetes patients using multiclass or multinomial classification and 2 cases of binary classification

in logistic regression and decision tree techniques. The data used in the study are diabetes patients
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from Clinical Care at 130 US Hospitals and Integrated Delivery Networks. The patients were divided

into 3 groups, i.e. not re-hospitalization, less than 30 days of re-hospitalization and more than 30

days of re-hospitalization. By comparing the classification techniques, it can be concluded that the

classification by decision tree technique using 2 cases of binary classification yields the best result.
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root
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leaf
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Figure 1 The components of a decision tree:
The Nodes represent the possible
attributes associated with an event.
The first node is called root and
represents the attribute with largest
information gain; Branches represent
the attributes values; and Leaves

represent the classes. [17]
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Table 1 The number and percentage of re-hospitalization in diabetes patients

Target group Not re-hospitalization

Less than 30 days of

re-hospitalization

More than 30 days of

re-hospitalization

Case 1 54,850 (53.92)

11,356 (11.16) 35,528 (34.92)

Target group Not re-hospitalization

Re-hospitalization

Case 2 54,850 (53.92)

46,384 (46.08)

Target group =

Less than 30 days of

re-hospitalization

More than 30 days of

re-hospitalization

Case 3 -

11,356 (24.22) 35,528 (75.78)

Values in parentheses are the percentage value.
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Table 2 Classification of re-hospitalization of diabetes patients in case 1

Classification False False Sensitivity Variable )
techniques positive | negative | <39 | 30 AR selection Roc
Case 1
Logistic regression 0.16 34.95 1.06 | 24.00 57.09 4 0.61 | 141
Decision tree 0.19 34.96 1.41 | 36.20 57.60 16 0.62 | 1.44
Lift value is the highest value from the lift chart.
Table 3 Classification of re-hospitalization of diabetes patients in case 2 and 3
Classification False False Variable
techniques positive | negative ensitivty | Accuracy selection Roc | it
Case 2
Logistic regression 9.52 28.98 64.65 61.51 10 0.65 | 1.50
Decision tree 12.43 25.22 62.99 62.35 14 0.66 | 1.52
Case 3
Logistic regression 24.19 0.40 75.62 75.41 4 0.55 | 1.03
Decision tree 24.18 0.41 75.62 75.42 7 0.59 | 1.08

Lift value is the highest value from the lift chart.
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Auaelsaunmudiiu 2 nsdudadunsdlas 2
nau Tnsdumevlunssuunagduunlunsdd 2
duduneunsn wmnwanisdiwundsngindu
fuaeitlinduininud-lulssmeiunaszaiuse
fndulanmunanisduunlaeiudl waninuanis
Fruunlunsdidl 2 Usngindunduunsnuenly
Tsmenuatgdosduundseinnsolunsdil 3 lng
Fuundsziamdunduininwisnlulsmeiuia
aelu 30 Tu uaznduaninwanlulsimeuia
1nn71 30 Fu FawansiTenuinseansnmues
nsduunUszianlagldinadaduliinisdndulaay
fivsravsamgagaluits 2 nsdl Taeliaraam
gneauviniuseay 62.35 uay 75.42 AUANU
Faslennnitgn arailalunsuunyssanviniy

a1

SP8AY 62.99 WAY 75.62 ANUAIAU SIUN 90 A
ROC index WNAU 0.66 wag 0.59 M1Ua1fu Lag
A1 lift 11U 1.52 kag 1.08 anuansu F9daiunn

VIgn Wanananns199 3

5. #3UNaN1339
15AnwnUSsuisuUseansaanlunig
SuunUseinnvasnsnduandnuanlulsmeuia
Y8 U38l3ALUMIURUUBIUNUINYITOVRENGY
wazuuuninia desuunidy 2 nsdl Tneldinaie
A1s3tAsITiNITanneeaedafnuayiulinig
fnaula nuinusednsnineesnisauunyuseian
Tneldmedaduliinisdadulanuuniniafisiwun
Wu 2 nsdl fUszdnSangean aenndesdu
UITuve9 Jelinek (2013) 15 99 Decision trees
and multi-level ensemble classifiers for
neurological diagnostics [20] haz41UTT8UD
Bihis (2015) 15 83 A generalized flow for multi-

class and binary classification tasks: An Azure
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ML approach [21] Fan1331uunUsELANTBINTT
ndvifnwdnlulssmewiavesgielsamu
figndsnudisun 3 nau Ae lainduaninwan
Tulsanenuna ndusninwnglulsmenunaniely
30 $u waznduindnwglulsimenunasinnn 30
U dawaliuvannunangvesaluuninglaein
wazlANAIUFUEAU (confusion matrix) losans

v v

pdananusuunglideuluuunin e
fidrununguunnnit 2 nau f¥nagimunnguil
aulatuumilingy uarsuaudeyslunguiivde
Fesndungudeasudusivundungudieds
#10819 1y nsdinguiiaulaidunguil 2 n1s
AnaAlagirualiTIuIuRan1sIunlungy
7l 2 Wunguiiaule wagdnunansdwunlungy
fwdefazsamidungunioafuuas fmumdundgs
$1984 Keulumseruanansaafana1nd il

YINABNITAAIUNAVDINITILUARANAIN [22]

v
LYY

aaunsidenldnisiuundszianteya
wuvaesnguvieninig sadumeianissiuund
ilinUanunuisvesa luuvindduaulade
\losnnauvesiiudsauiisiuau 2 nqu fins
AUINAIYBIAYIARINa1laen1siTMuAngule
naunilafungussds vilkniseuaiaindaia
annsalfiduildvienasmsdsyfiuussans
ATNVDIAILUUNT BONANITNIINTIUID 808 19
wingas lnglaneeg198u3semansunndd
deuldarnunindanuduaulunisudananis
AadelsanTonsiladenneiauninig q aqe
N15M53IN10IUJUANIT N1TTI8UNANTIT
38n1snils fle Menuiwansiaduuinuiona
anaduau Inenanisnsiedeudlonmaiauauin
Wia (false positive) WsewaauLiia (false negative)

Fuldaus n1sulanunaddessyainsetady
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