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บทคัดย่อ 
งานวิจัยนี้ศึกษาการพยากรณ์อนุกรมเวลาที่มีลักษณะไม่เป็นเชิงเส้นและไม่คงท่ีด้วยวิธีการพยากรณ์ 3 วิธี คือ 

วิธีบ็อกซ์และเจนกิ้นส์ (Box-Jenkins แบ่งอนุกรมเวลาที่จำลองขึ้นมาออกเป็น 2 ส่วน ส่วนท่ี 1 มีจำนวน 150 ค่า ใช้

สำหรับสร้างตัวแบบพยากรณ์ และส่วนที่ 2 มีจำนวน 20 ค่า ใช้สำหรับเปรียบเทียบประสิทธิภาพในการพยากรณ์  

โดยใช้เกณฑ์เปรียบเทียบประสิทธิภาพในการพยากรณ์ คือ ค่า MSE และค่า MAPE ผลการศึกษาพบว่าวิธีบ็อกและ

เจนกิ้นส์ด้วยตัวแบบ ARIMA มีประสิทธิภาพในการพยากรณ์ดีที่สุดในการพยากรณ์อนุกรมเวลาที่มีแนวโน้มเอ็กซ์

โปเนนเชียลที่มีเลขชี้กำลังบวกและโลจิสติก ในขณะที่วิธี EMD-ARIMA มีประสิทธิภาพในการพยากรณ์ดีที่สุดในการ

พยากรณ์อนุกรมเวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียล โดยวิธี EEMD-ARIMA ด้วยตัวแบบ ARIMA วิธี empirical 

mode decomposition ด้วยตัวแบบ ARIMA ของวิธีบ็อกซ์และเจนกิ ้นส์ (EMD-ARIMA) และวิธี ensemble 

empirical mode decomposition ด้วยตัวแบบ ARIMA ของวิธีบ็อกซ์และเจนกิ ้นส์ (EEMD-ARIMA) โดยการ

จำลองข้อมูลอนุกรมเวลาจำนวน 170 ค่า ด้วยโปรแกรม R จำนวน 6 รูปแบบ คือ อนุกรมเวลาที่มีแนวโน้มโพลิโน

เมียลอันดับสองและอันดับสาม อนุกรมเวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังบวกและกำลังลบ และ

อนุกรมเวลาที่มีแนวโน้มโลจิสติกที่มีเลขชี้กำลังบวกและกำลังลบ แทธิภาพในการพยากรณ์ดีที่สุดในการพยากรณ์

อนุกรมเวลาที่มีแนวโน้มโพลิโนเมียล เอ็กซ์โปเนนเชียลที่มีเลขช้ีกำลังลบและโลจิสติก 

คำสำคัญ : การจำลอง; วิธีการแยกส่วนประกอบ; วิธีบ็อกซ์และเจนกิ้นส์ 
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Abstract 
This research studied non-linear and non-stationary time series for three forecasting methods 

that were Box- Jenkins method with ARIMA model, empirical mode decomposition with ARIMA 
model of Box- Jenkins method ( EMD- ARIMA)  and ensemble empirical mode decomposition with 
ARIMA model of Box- Jenkins method ( EEMD- ARIMA) .  Time series data with 170 values were 
simulated by program R in six models consisting of second and third-order polynomial trend time 
series, exponential trend time series with positive and negative exponents and logistic trend time 
series with positive and negative exponents.  The data were divided into two parts.  The first part 
with 150 values, was used to create forecasting model and the second part with 20 values, was 
used for comparing efficiency of forecasting methods.  Efficiency criteria were MSE and MAPE.  The 
results showed that the Box-Jenkins method with ARIMA model was the most efficient method for 
forecasting exponential trend time series with positive exponent and logistic trend time series, 
whereas the EMD-ARIMA method was the most efficient method for exponential trend time series. 
In addition, the EEMD- ARIMA method was the most efficient method for forecasting polynomial, 
exponential trend time series with positive exponent and logistic trend time series. 
 

Keywords: simulation; decomposition method; Box-Jenkins method 
 
1. บทนำ 

การพยากรณ์ในอนุกรมเวลา คือ การทำนายค่า
ของอนุกรมเวลาในอนาคตล่วงหน้าโดยใช้อนุกรมเวลา
ในอดีตและปัจจุบันเพื่อช่วยในการพยากรณ์ ซึ ่งการ
พยากรณ์ในอนุกรมเวลานั้นมีความสำคัญต่อผู้คนใน
ปัจจุบันอย่างมาก เนื ่องจากถ้าสามารถพยากรณ์
อนุกรมเวลาชนิดต่าง ๆ เช่น อนุกรมเวลาราคาหุ้น 
อนุกรมเวลาปริมาณน้ำฝน อนุกรมเวลาการใช้พลังงาน
ไฟฟ้าในแต่ละปี จะทำให้ทราบว่าเหตุการณ์ในอนาคต
เป็นอย่างไร หรือมีแนวโน้มเป็นอย่างไร ซึ่งจะช่วยใน
การรับมือกับเหตุการณ์ในอนาคตได้ อย่างไรก็ตาม การ
พยากรณ์อนุกรมเวลาที่ดีจะต้องมีความแม่นยำสูงและ
พยากรณ์ได้ใกล้เคียงกับค่าจริงมากที่สุด [1]  

การพยากรณ์อนุกรมเวลาในปัจจุบันมีหลาก 
หลายวิธี เช่น การพยากรณ์โดยใช้ค่าเฉลี่ยเคลื่อนที่  

การแยกส่วนประกอบของอนุกรมเวลา การพยากรณ์
โดยใช้ตัวแบบบ็อกซ์และเจนกินส์ ซึ่งงานวิจัยนี้ได้เลือก 
ใช้วิธีการพยากรณ์โดยใช้วิธีบ็อกซ์และเจนกิ้นส์ด้วยตัว
แบบ ARIMA ซึ่งเป็นวิธีการที่มีการใช้อย่างแพร่หลาย
วิธีหนึ่ง วิธีบ็อกซ์และเจนกิ้นส์ด้วยตัวแบบ ARIMA มี
หลักการ คือ พิจารณาสัมประสิทธ์ิสหสัมพันธ์ในตนเอง
และสัมประสิทธิ ์สหสัมพันธ์บางส่วนในตนเองของ
อนุกรมเวลา แล้วกำหนดตัวแบบที ่เหมาะสมให้กับ
อนุกรมเวลานั้น อย่างไรก็ตาม วิธีการพยากรณ์อนกุรม
เวลาด้วยตัวแบบบ็อกซ์และเจนกิ ้นส์ย ังพยากรณ์
อนุกรมเวลาที่มีลักษณะไม่เป็นเชิงเส้น (non-linear 
time series) ได้ไม่ดีนัก [2] จึงมีผู้นำเสนอวิธีการผสม
ที่มีการใช้ตัวแบบบ็อกซ์และเจนกิ้นส์ ซึ่งสามารถช่วยใน
การพยากรณ์อนุกรมเวลาที่มีลักษณะไม่เป็นเชิงเส้นดี
ขึ้น 
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ในป ีค.ศ. 2014 Abadan และ Shabri [3] ศึกษา
เปรียบเทียบประสิทธิภาพการพยากรณ์ราคาข้าว
ระหว่างวิธีบ็อกซ์และเจนกิ้นส์ด้วยตวัแบบ ARIMA และ
วิธี EMD-ARIMA ซึ่งข้อสรุปที่ได้ คือ วิธี EMD-ARIMA 
มีประสิทธิภาพในการพยากรณ์ดีกว่าวิธีตัวแบบบ็อกซ์
และเจนกิ้นส์ และในปี ค.ศ. 2016  Zhou และ Huang 
[4] ศึกษาการพยากรณ์อายุของแบตเตอรี่ลเิทียมไอออน
ด ้ วยว ิ ธ ี การ  4  ว ิ ธี  ได ้ แก ่  EMD-ARIMA, ARIMA, 
relevance vector machine (RVM) และ ensemble 
echo state networks (EESN) เมื่อทดสอบประสิทธิ 
ภาพด ้วยค ่าคลาดเคล ื ่อนส ัมบ ูรณ ์เฉล ี ่ย  (mean 
absolute error, MAE)  พบว ่ า ว ิ ธี  EMD-ARIMA มี
ประสิทธิภาพสูงที่สุด  

ในปี ค.ศ. 2012 Bao และคณะ [2] ศึกษาการ
พยากรณ์ความเชื่อมั่นของซอฟแวร์โดยใช้วิธี EEMD-
ARIMA พบว่าวิธีการดังกล่าวมีประสิทธิภาพสูงสุดเมื่อ
เปรียบเทียบกับวิธี neural network และ support 
vector machine และวิธี EEMD-ARIMA โดยข้อดีของ 
EEMD คือ ช่วยทำให้อนุกรมเวลามีลักษณะเป็นเชิงเส้น
และคงที่มากขึ้น และมีความยุ่งยากในการใช้งานน้อย
ก ว ่ า ว ิ ธี  neural network แ ล ะ  support vector 
machine 

ในปี ค.ศ. 2017 Min และคณะ ศึกษาการ
พยากรณ์ความเร็วลมซึ่งมีลักษณะของอนุกรมเวลาที่ไม่
เป็นเชิงเส้นและไม่คงที่ด้วยวิธี EEMD-ARIMA และ
เปรียบเทียบกับวิธีบ็อกซ์และเจนกิ้นส์และวิธี EMD-
ARIMA โดยใช้เกณฑ์เปรียบเทียบ คือ ค่าเปอร์เซ็นต์
ความคลาดเคลื ่อนสัมบูรณ์เฉลี ่ย (mean absolute 
percentage error, MAPE)  ค ่ า เฉล ี ่ ยความคลาด
เคลื่อนสัมบูรณ์ (mean absolute error, MAE) และ
ค่ารากที่สองของค่าเฉลี่ยความคลาดเคลื่อนกำลังสอง 
(root mean square error, RMSE) ผลที ่ได้ คือ วิธี 
EEMD-ARIMA มีประสิทธิภาพในการพยากรณ์สงูกว่า 

อีกสองวิธี 
ผลสรุปของงานวิจัยที่กล่าวมาข้างต้นจะเห็นว่า 

วิธี EMD-ARIMA และวิธี EEMD-ARIMA มีประสิทธิ 
ภาพในการพยากรณ์สูงกว่าวิธีพยากรณ์โดยใช้ตัวแบบ 
บ็อกซ์และเจนกิ ้นส์ด้วยตัวแบบ ARIMA กับข้อมูล
อนุกรมเวลาที่มีอยู่จริง จึงทำให้มีสนใจการพยากรณ์
ด้วยวิธี EMD-ARIMA และวิธี EEMD-ARIMA และได้
เปรียบเทียบประสิทธิภาพของวิธีการพยากรณ์ทั้ง 2 วิธี 
กับวิธีการพยากรณ์ด้วยตัวแบบบ็อกซ์และเจนกิ้นส์ โดย
การจำลองอนุกรมเวลาที่มีลักษณะไม่เป็นเชิงเส้นและ
ไม่คงที่ 6 รูปแบบ ซึ่งอนุกรมเวลาที่จำลองทั้ง 6 รูป 
แบบ คือ อนุกรมเวลาที่มีแนวโน้มโพลิโนเมียลอันดับ
สองและอันดับสาม อนุกรมเวลาที ่มีแนวโน้มเอ็กซ์
โปเนนเชียลที ่มีเลขชี ้กำลังบวกและกำลังลบ และ
อนุกรมเวลาที่มีแนวโน้มโลจิสติกที่มีเลขชี้กำลังบวก
และกำลังลบ และเปรียบเทียบประสิทธิภาพการ
พยากรณ์ของวิธีการพยากรณ์ทั ้ง 3 วิธี ด้วยค่าเฉลี่ย
ความคลาดเคล ื ่อนกำล ั งสองและค ่ าเฉล ี ่ ยของ
เปอร์เซ็นต์ความคลาดเคลื่อนสัมบูรณ์ 
 

2. วิธีการดำเนินการวิจัย 
2.1 การจำลองอนุกรมเวลา 

งานวิจัยนี้ศึกษาประสิทธิภาพการพยากรณ์
ของวิธีบ็อกซ์และเจนกิ ้นส์ด้วยตัวแบบ ARIMA วิธี 
EMD-ARIMA และวิธี EEMD-ARIMA ในการพยากรณ์
อนุกรมเวลาที่มีลักษณะไม่เป็นเชิงเส้นและไม่คงที่ โดย
จำลองอนุกรมเวลา ( )ty  ที่มีลักษณะไม่เป็นเชิงเส้น
และไม่คงท่ี 6 รูปแบบดังรูปที่ 1 [6-8] โดยใช้โปรแกรม 
R เวอร์ชั่น 3.4.1 กำหนดให้ข้อมูลอนุกรมเวลา ( )n  
เท่ากับ 170 ซึ ่งรายละเอียดของอนุกรมเวลาทั ้ง 6 
รูปแบบ มีดังนี ้

2.1.1 อนุกรมเวลารูปแบบท่ี 1 คือ อนุกรม
เวลาที่มีแนวโน้มโพลิโนเมียลอันดับสอง มีตัวแบบ คือ 
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t ty at bt c = + + +  กำหนดให้ 1, 1, 2a b c= = − = −  
และ t  แทนตัวแปรรบกวนโดยสุ่ม (noise) ที่เวลา t  
มีการแจกแจงปกติ มีค่าเฉลี่ยเท่ากับ 0 และมีความ
แปรปรวนไม่คงที่เท่ากับ 2

t  โดยที่ 2

t  มีการแจก
แจงปกติ มีค่าเฉลี่ยเท่ากับ 0 และมีความแปรปรวน
เท่ากับ 3,000 

2.1.2 อนุกรมเวลารูปแบบท่ี 2 คือ อนุกรม
เวลาที่มีแนวโน้มโพลิโนเมียลอันดับสาม มีตัวแบบ คือ 

3 2

t ty at bt ct d = + + + +  กำหนดให ้  1,a =

1, 1, 2b c d= = − = −  และ t  แทนตัวแปรรบกวน
โดยสุ่มที่เวลา t  มีการแจกแจงปกติ มีค่าเฉลี่ยเท่ากับ 
0 และมีความแปรปรวนไม่คงที ่เท่ากับ 2

t  โดยที่ 
2

t  มีการแจกแจงปกติ มีค่าเฉลี่ยเท่ากับ 0 และมี
ความแปรปรวนเท่ากับ 200,000 

2.1.3 อนุกรมเวลารูปแบบท่ี 3 คือ อนุกรม

เวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขช้ีกำลังบวก มี

ตัวแบบ คือ t

t ty ab = +   กำหนดให้ 1, 1.01a b= =  

และ t  แทนตัวแปรรบกวนโดยสุ่มที่เวลา t  มีการ

แจกแจงปกต ิ ม ีค ่าเฉล ี ่ยเท ่าก ับ 0 และม ีความ

แปรปรวนไม่คงที่เท่ากับ 2

t  โดยที่ 2

t  มีการแจก

แจงปกติ มีค่าเฉลี่ยเท่ากับ 0 และมีความแปรปรวน

เท่ากับ 0.5 

2.1.4 อนุกรมเวลารูปแบบท่ี 4 คือ อนุกรม

เวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังติดลบ 

มีตัวแบบ คือ t

t ty ab 
−

= +  กำหนดให้ 1, 1.01a b= =  

และ t  แทนตัวแปรรบกวนโดยสุ่มที่เวลา t  มีการ

แจกแจงปกต ิ ม ีค ่าเฉล ี ่ยเท ่าก ับ 0 และม ีความ

แปรปรวนไม่คงที่เท่ากับ 2

t  โดยที่ 2

t  มีการแจก

แจงปกติ มีค่าเฉลี่ยเท่ากับ 0 และมีความแปรปรวน

เท่ากับ 0.1 

2.1.5 อนุกรมเวลารูปแบบท่ี 5 คือ อนุกรม

เวลาที่มีแนวโน้มโลจิสติกที่มีเลขชี้กำลังบวก มีตัวแบบ 

คือ 1
(1 )

t

t ty ab 
−

= + +  กำหนดให้ 1, 1.1a b= =  

และ t  แทนตัวแปรรบกวนโดยสุ่มที่เวลา t  มีการ

แจกแจงปกต ิ ม ีค ่าเฉล ี ่ยเท ่าก ับ 0 และม ีความ

แปรปรวนไม่คงที่เท่ากับ 2

t  โดยที่ 2

t  คือ มีการ

แจกแจงปกต ิ ม ีค ่าเฉล ี ่ยเท ่าก ับ 0 และม ีความ

แปรปรวนเท่ากับ 0.05 

2.1.6 อนุกรมเวลารูปแบบที่ 6 คือ อนุกรม

เวลาที่มีแนวโน้มโลจิสติกที่มีเลขชี้กำลังลบ มีตัวแบบ 

คือ 1
(1 )

t

t ty ab 
− −

= + +  กำหนดให้ 1, 1.1a b= =  

และ t  แทนตัวแปรรบกวนโดยสุ่มที่เวลา t  มีการ
แจกแจงปกต ิ ม ีค ่าเฉล ี ่ยเท ่าก ับ 0 และม ีความ

แปรปรวนไม่คงที่เท่ากับ 2

t  โดยที่ 2

t  มีการแจก
แจงปกติ มีค่าเฉลี่ยเท่ากับ 0 และมีความแปรปรวน
เท่ากับ 0.05 

หลังจากนั้นแบ่งอนุกรมเวลาที่จำลองขึ้น

ทั้งหมด 170 ค่า เป็น 2 ส่วน โดยอนุกรมเวลาส่วนที่ 1 

มีจำนวน 150 ค่าแรกใช้สำหรับสร้างตัวแบบพยากรณ์ 
และอนุกรมเวลาส่วนที่ 2 มีจำนวน 20 ค่าใช้สำหรับ

ตรวจสอบค่าพยากรณ์ที่ได้จากตัวแบบพยากรณ์จาก
อนุกรมเวลาส่วนท่ี 1  

2.2 วิธีการพยากรณ์อนุกรมเวลา 

2.2.1 วิธีบ็อกซ์และเจนกิ้นส์ด้วยตัวแบบ 
ARIMA เป็นวิธีการพยากรณ์ที่มีหลักการ คือ กำหนด
ตัวแบบพยากรณ์โดยการพิจารณาฟังก์ชันสหสมัพันธ์ใน
ต น เ อ ง  ( autocorrelation function, ACF)  แ ล ะ
ฟ ั งก ์ช ันสหส ัมพ ันธ ์ ในตนเองบางส ่วน ( partial 
autocorrelation function, PACF) ของอนุกรมเวลา
ท ี ่ ม ี ล ักษณะคงท ี ่  ( stationary time series)  หรือ
อนุกรมเวลาที่มีค่าเฉลี่ยและความแปรปรวนคงที่ [9] 
ด ังน ั ้นก ่อนท ี ่จะกำหนดต ัวแบบ autoregressive 
integrated moving average (ARIMA) ให้กับอนุกรม
เวลา จะต้องมีการตรวจสอบว่าอนุกรมเวลามีลักษณะ
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คงที ่หร ือไม่ ถ ้าอนุกรมเวลายังม ีค ่าเฉลี ่ยไม่คงที่  
สามารถหาผลต่างของอนุกรมเวลา [1] และถ้าหาก
อนุกรมเวลามีความแปรปรวนไม่คงที่ สามารถแปลง
อนุกรมเวลาให้มีความแปรปรวนคงที่มากขึ้นด้วยการ
ใช้ล็อกการิธึมธรรมชาติ (natural logarithm) หรือ
รากท่ีสอง (square root) ของ ty  นั่นคือ ln(y )t tZ =  
หรือ  

t tZ y=  [1] 

หลังจากที ่อนุกรมเวลาคงที ่แล้วจะ
กำหนดตัวแบบให้กับอนุกรมเวลาเพื่อนำไปใช้ในการ
พยากรณ์ต่อไป ซึ่งมีขั้นตอนดังนี้ [1] 

(1) กำหนดตัวแบบพยากรณ์ โดย 

พิจารณา ACF และ PACF ของอนุกรมเวลาที่มีลักษณะ
คงที่ ซึ่งตัวแบบท่ีกำหนดให ้คือ ตัวแบบ ARIMA(p,d,q) 
ดังสมการที่ (2.1) [9]  

( )(1 B) (B)
d

P t q tB z   − = +         (2.1)  

โดยที่ tZ  แทนอนุกรมเวลาที่มีลักษณะคงท่ี; ( )p B =  
2

1 21 ...
p

pB B B  − − − −  แทนการถดถอยใน

ต ัวเองแบบไม ่ม ีฤด ูกาลอ ันด ับ p [non-seasonal 

autoregressive order p, AR( p) ]; (1 B)
d

−  แ ทน

อันดับของผลต่างแบบไม่มีฤดูกาล (non-seasonal 

difference) โดยที่ d  คือ จำนวนครั้งของผลต่างแบบ

ไม่มีฤดูกาล; ( )p B  =  แทนค่าคงที่ โดยที่   

แทนค่าเฉลี่ยของอนุกรมเวลาที่มีลักษณะคงท่ี; ( )q B =

2

1 21 ...
q

qB B B  − − − −  แทนค่าเฉลี่ยเคลื่อนที่แบบไม่มี

ฤดูกาลอันดับ q (non-seasonal moving average 

order q, MA(q)) ; B  แทนตัวดำเนินการถอยหลัง 

(backward shift operator)  โดยท ี ่  k

t t kB y y −=  

และ t แทนค่าคลาดเคลื่อนสุ่มที่มีการแจกแจงปกติ มี

ค่าเฉลี่ยเท่ากับ 0 และค่าความแปรปรวนคงที่
 

   
First time series type Second time series type Third time series type 

   
Fourth time series type Fifth time series type Sixth time series type 

 

Figure 1 Six time series types plots 
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(2) ประมาณค่าพารามิเตอร์ของตัว
แบบพยากรณ์ด้วยวิธีกำลังสองน้อยสุด และตรวจสอบ
ความมีนัยสำคัญของพารามิเตอร์ที่ประมาณได้ด้วยการ
ทดสอบ t-test 

(3) ตรวจสอบความถูกต้องของตัวแบบ
พยากรณ์ ได้แก่ การตรวจสอบความเป็นอิสระกันของ
ค่าความคลาดเคลื่อนของการพยากรณ์โดยพิจารณา
จากการทดสอบสหสัมพันธ์ในตนเองของ Box และ 
Ljung และการตรวจสอบการแจกแจงปกติของค่า
ความคลาดเคลื่อนของการพยากรณ์ว่ามีค่าเฉลี่ยเท่ากับ
ศูนย์และมีความแปรปรวนคงที่หรือไม่ โดยพิจารณา
จากแผนภาพความน่าจะเป็นแบบปกต ิ (normal 
probability plot)  ฮ ิสโทแกรมและแผนภาพการ
กระจายระหว่างค่าพยากรณ์ (fitted value) กับค่า
ความคลาดเคลื่อนของการพยากรณ์ หากตัวแบบที่ได้
ไม่ผ่านการตรวจสอบความถูกต้องจะย้อนกลับไปทำ
ขั ้นตอนที ่ (1) ใหม่จนกระทั่งได้ตัวแบบพยากรณ์ที่
เหมาะสม [9] 

(4) นำตัวแบบที่ผ่านการตรวจสอบไป
ใช้ในการพยากรณ์ ซึ่งผู้วิจัยจะพยากรณ์ทั้งหมด 20 ค่า 
แล้วนำไปเปรียบเทียบกับข้อมูลในส่วนที่สอง โดยหาค่า 
MSE และ MAPE เพื ่อใช้ในการเปรียบเทียบวิธีการ
พยากรณ์ต่อไป  

2.2.2 วิธี empirical mode decomposi-
tion ด้วยตัวแบบ ARIMA (EMD-ARIMA) หลักการของ
วิธีการนี้ คือ แยกส่วนประกอบของอนุกรมเวลา ty  
ออกมาเป็นฟังก์ชัน intrinsic mode functions (IMFs) 
จำนวนหนึ่งและค่าเศษเหลือ (residue) จากนั้นใช้วิธี 
บ็อกซ์และเจนกิ้นส์พยากรณ์ IMFs และ residue แล้ว
นำค่าพยากรณ์ IMFs และ residue ที่ได้จากวิธีบ็อกซ์
และเจนกิ้นส์มารวมกันจะได้เป็นค่าพยากรณ์ ˆ

ty  ซึ่งมี
ขั้นตอนดังน้ี [3] 

(1) คำนวณค่า t t td y m= −  โดยที่ 

max( ) min( )(e ) / 2t t tm e= + , 
max( )e t

 แทน upper  

envelope และ 
max( )e t

 แทน lower envelope 

(2) ตรวจสอบว่าค่า td  ที่ได้ มีเงื่อนไข
ของการเป็น IMF ครบทั้ง 2 ข้อ หรือไม่ ซึ่งเงื่อนไข คือ 

td  จะต ้องม ีจำนวนของค ่า local extrema และ
จำนวนของ zero-crossing เท่ากันหรือต่างกันไม่เกิน 
1 และที่จุดใด ๆ ก็ตามของ td  จะต้องมีค่าเฉลี่ยของ 
envelope ท ี ่ ได ้จากค ่า local maxima ก ับ local 
minima เท่ากับ 0 ถ้า td  มีเงื ่อนไขครบ จะให้ td  

คือ tIMF  และหาค่า residue ( )tr  ได้จาก t t tr y d= −  
แต่ในกรณีที่ td  มีเงื่อนไขไม่ครบ จะถือว่า td  ไม่เป็น 
IMF แล้วกำหนดให้ ty  เท่ากับ td  แล้วย้อนกลับไป
ทำข้ันตอนท่ี (1) 

(3) ทำตามขั้นตอนที่ (1) และ (2) จน
ค่า tr  จะเป็นค่าคงที่ หรือ tIMF  ที่ได้มีค่าสูงสุดต่ำสุด
เพียงค่าเดียวและไม่สามารถหา IMF ได้อีก 

(4) เม ื ่อทำครบทุกข ั ้นตอนแล้วจะ
สามารถเขียนสมการของอนุกรมเวลา ty  ในรูปของ
ผลบวกของฟังก์ชัน IMF และค่า residue ได้ดังสมการ  

1

N

t kt t
k

y IMF r
=

= +                                (2.2) 

โดยที่ ktIMF  แทน IMF ลำดับที่ k  ณ เวลา t  และ 
N  แทนจำนวนของฟังก์ชัน IMF 

(5)  กำหนดต ัวแบบ ARIMA ในการ
พยากรณ์ให้แก่ค่า ktIMF  และค่า tr  เพื่อหาค่าหาค่า
พยากรณ์ ณ เวลา t  โดยที่ t  = 1-170 ของฟังก์ชัน 

ktIMF  ทั้งหมด ˆ( )ktIMF  และค่าพยากรณ์ ณ เวลา 

t  ของค่า residue ˆ( )tr  หลังจากนั ้นนำค่า ˆ
ktIMF  

และค่า t̂r  มารวมกันจะได้เป็นค่าพยากรณ์อนุกรม
เวลาที่เวลา t  ตั้งแต่ 1-170 หรือ ˆ

ty  ดังสมการ 

1

ˆˆ ˆ
N

t kt t
k

y IMF r
=

= +                                 (2.3) 

โดยสามารถสรุปขั้นตอนของวิธี EMD-
ARIMA เป็นแผนภาพดังรูปที่ 2 
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Figure 2 Diagram of EMD- ARIMA method 

procedures [5] 
 

2.2.3 ว ิ ธ ี  ensemble empirical mode 
decomposetion ด ้ ว ย ต ั ว แ บ บ  ARIMA ( EEMD-
ARIMA) หลักการของวิธีการนี้ คือ แยกส่วนประกอบ
ของอนุกรมเวลา ty  ออกมาเป็นฟังก์ชัน IMF จำนวน
หนึ่งและค่า residue คล้ายกับวิธีการ EMD แต่วิธีการ
น ี ้จะม ีการใช ้  gaussian white noise เข ้ามาช ่วย
แก้ปัญหา mode mixing ซึ่งเป็นปัญหาที่เกิดขึ ้นใน
วิธีการ EMD ซึ่งหลักการที่เหลือจะมีความคล้ายกับวิธี 
EMD-ARIMA โดยมีขั้นตอนดังนี้ [11] 

(1) สร้างอนุกรมเวลา ity  จากสมการ
ดังต่อไปนี้ ; 1, 2,...,it t ity y i e= + =  โดยที่ e  
แทนจำนวนครั้งทั้งหมดในการบวกอนุกรมเวลาด้วย 

it  ซึ่งในงานวิจัยนี้กำหนด 250e =  และ it  แทน 
gaussian white noise ณ เวลา t  ในการบวกครั้งที่ 
i  ซึ ่งมีการแจกแจงปกติ มีค่าเฉลี่ยเท่ากับ 0 และมี
ความแปรปรวนเท่ากับ 0.2 นั่นคือ (0, 0.2)it N   

(2) แยกส่วนประกอบของอนุกรมเวลา
ใหม่ ( )ity  ออกมาเป็น intrinsic mode functions 
และค่า residue ด้วยวิธีการ EMD 

(3) ทำซ้ำข้ันตอน (1) กับ (2) แต่เปลี่ยน
ชุดของ gaussian white noise 

(4) หลังจากที ่ทำขั ้นตอน (3) จะได้
ฟังก์ชัน IMF ทั้งหมด 250 ชุด และค่า residue ทั้งหมด 
250 ชุด แล้วคำนวณค่าเฉลี่ยดังสมการ 

1

e

kit
i

kt

IMF

IMF
e

=



=                                (2.4)  

 1

e

it
i

t

r

r
e

=



=                                               (2.5) 

โดยที่ kitIMF  คือ ค่าของ IMF ลำดับที่ k  ชุดที่ i  ณ 
เวลา t  และ itr  คือ ค่า residue ชุดที่ i  ณ เวลา t  

สุดท้ายจะได้ผลลัพธ์เป็นฟังก์ชัน IMF 1 
ชุด และค่า residue 1 ชุด ซึ่งสามารถเขียนเป็นสมการ
ของอนุกรมเวลา 

ty  ในรูปของผลบวกของฟังก์ชัน IMF 
และค่า residue ไดด้ังสมการ (2.2) 

(5) กำหนดต ัวแบบ ARIMA ในการ
พยากรณ์ให้แก่ค่า ktIMF  และค่า tr  เพื ่อทำหาค่า
พยากรณ์ ณ เวลา t  ของฟังก์ชัน ktIMF  ทั ้งหมด 

ˆ( )ktIMF และค่าพยากรณ์ ณ เวลา t  ของค่า residue 
ˆ( )tr  แล้วนำค่า ˆ

ktIMF  และค่า t̂r  มารวมกันจะได้
เป็นค่าพยากรณ์อนุกรมเวลาที่เวลา t  หรือ ˆ

ty  ดัง
สมการ (2.3) 

โดยสามารถสรุปขั้นตอนของวิธี EEMD 
-ARIMA เป็นแผนภาพได้ดังรูปที่ 3  

2.3 เกณฑ์การตรวจสอบประสิทธิภาพในการ
พยากรณ์ 

งานวิจัยนี้ใช้เกณฑ์ตรวจสอบประสิทธิภาพ 
2 เกณฑ์ ได้แก่ ค่า MSE และ MAPE ซึ่งมีสูตรในการ
คำนวณดังนี้ [10] 

2

1

ˆ(y y )
n

t t
tMSE

n

=

−

=                               (2.6) 

1

ˆ100 n
t t

t
t

y y
MAPE

n y=

−
=                              (2.7) 

โดยที่ n  แทนจำนวนข้อมูลของอนุกรมเวลา 
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Figure 3 Diagram of EEMD- ARIMA method 

procedures [5] 

 
3. ผลการวิจัย  

อนุกรมเวลา 6 รูปแบบ ได้แก่ อนุกรมเวลาที่มี

แนวโน้มโพลิโนเมียล 2 ร ูปแบบ อนุกรมเวลาที ่มี
แนวโน้มเอ็กซ์โปเนนเชียล 2 รูปแบบ และอนุกรมเวลา

ที่มีแนวโน้มโลจิสติก 2 รูปแบบ และกำหนดตัวแบบที่

ใช้ในการพยากรณ์อนุกรมเวลาด้วยวิธีการพยากรณ์ 3 
วิธี ได้แก่ วิธีบ็อกซ์และเจนกิ้นส์ด้วยตัวแบบ ARIMA วิธี 

EMD-ARIMA และวิธี EEMD-ARIMA ผลของค่า MSE 
และ MAPE แสดงดังตารางที่ 1 

ตารางที่ 1 เมื ่อพิจารณาจากค่า MSE พบว่า

สำหรับการพยากรณ์อนุกรมเวลารูปแบบท่ี 1, 2 และ 4 
ซึ่งเป็นอนุกรมเวลาที่มีแนวโน้มโพลิโนเมียลอันดับสอง

และสาม และเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังลบ วิธี 
EEMD-ARIMA ให้ค่า MSE ต่ำที่สุดเท่ากับ 8.8 x 106, 

4.7 x 1010 และ 0.0099 ตามลำดับ ขณะที่การพยากรณ์

อนุกรมเวลารูปแบบที ่ 3 ซึ ่งเป็นอนุกรมเวลาที ่มี

แนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังบวก วิธีบ็อกซ์

และเจนกิ้นส์ด้วยตัวแบบ ARIMA และวิธี EMD-ARIMA 

ให้ค่า MSE ต่ำที ่สุดและมีค่าใกล้เคียงกันซึ่งเท่ากับ 

0.3392 และ 0.3459 ตามลำดับ และสำหรับการ
พยากรณ์อนุกรมเวลารูปแบบที ่ 5 และ 6 ซึ ่งเป็น

อนุกรมเวลาที่มีแนวโน้มโลจิสติกที่มีเลขชี้กำลังบวก

และลบ ตามลำดับ วิธีบ็อกซ์และเจนกิ้นส์ด้วยตัวแบบ 

ARIMA และวิธ ี EEMD-ARIMA ให้ค่า MSE ต่ำที ่สุด
และมีค่าใกล้เคียงกันซึ่งเท่ากับ 0.0024 และ 0.0026 
ตามลำดับ สำหรับการพยากรณ์อนุกรมเวลารูปแบบท่ี 

5 และ MSE เท่ากับ 0.0031 และ 0.0028 ตามลำดับ 

สำหรับการพยากรณ์อนุกรมเวลารูปแบบที่ 6 และเมื่อ

พิจารณาจากค่า MAPE พบว่าสำหรับการพยากรณ์
อนุกรมเวลารูปแบบที ่ 1 และรูปแบบที ่ 2 ซึ ่งเป็น

อนุกรมเวลาที่มีแนวโน้มโพลิโนเมียลอันดับสองและ
สาม วิธี EEMD-ARIMA ให้ค่า MAPE ต่ำที่สุดเท่ากับ 

9.6223 และ 3.9734 ตามลำดับ ในขณะที ่การ

พยากรณ์อนุกรมเวลารูปแบบท่ี 3 ซึ่งเป็นอนุกรมเวลาที่
มีแนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังบวก วิธี  

บ็อกซ์และเจนกิ้นส์ด้วยตัวแบบ ARIMA และวิธี EMD-
ARIMA ให้ค่า MAPE ต่ำที่สุดและมีค่าใกล้เคียงกันซึ่ง

เท่ากับ 9.0091 และ 9.8261 ตามลำดับ สำหรับการ

พยากรณ์อนุกรมเวลารูปแบบท่ี 4 ซึ่งเป็นอนุกรมเวลาที่
มีแนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขช้ีกำลังลบ วิธี EMD-
ARIMA ให้ค่า MAPE ต่ำที ่ส ุดซึ ่งเท่ากับ 356.3533 

และสำหรับการพยากรณ์อนุกรมเวลารูปแบบที่ 5 และ

รูปแบบที่ 6 ซึ่งเป็นอนุกรมเวลาที่มีแนวโน้มโลจิสติกทีม่ี
เลขชี้กำลังบวกและลบ ตามลำดับ วิธีบ็อกซ์และเจน

กิ้นส์ด้วยตัวแบบ ARIMA และวิธี EEMD-ARIMA ให้ค่า 
MAPE ต ่ำท ี ่ส ุดและม ีค ่าใกล ้ เค ียงก ันซ ึ ่ ง เท ่ากับ 
100.6131 และ 100.2875 ตามลำดับ สำหรับการ

พยากรณ์อนุกรมเวลารูปแบบที่ 5 และเท่ากับ 4.4402 

และ 4.3056 ตามลำดับ สำหรับการพยากรณ์อนุกรม

เวลารูปแบบท่ี 6 
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Table 1 MSE and MAPE of ARIMA, EMD-ARIMA and EEMD-ARIMA methods for six time series types 
 

Time series  
type 

ARIMA method for  

ty   

ARIMA method for

t tZ y=  

EMD-ARIMA method for 

ty  

EEMD-ARIMA method for 

ty  

MSE MAPE MSE MAPE MSE MAPE MSE MAPE 

First type 1.0 x 107 10.0101 2.6 x 107 14.5330 1.3 x 107 11.7029 8.8 x 106* 9.6223** 

Second type 9.3 x 1010 5.2262 1.0 x 1012 20.2491 1.1 x 1011 5.9245 4.7 x 1010* 3.9734** 

Third type 0.4356 9.7783 0.3392   9.0091** 0.3459 9.8261 0.8935 16.8173 

Fourth type 0.0141 1,702.5667 0.0139 1,690.9879 0.0331 356.3533** 0.0099* 1,254.9433 

Fifth type 0.0030 135.2633 0.0024* 100.6131 0.0061 282.5146 0.0026 100.2875** 

Sixth type 0.0035 4.8702 0.0031 4.4402 0.0514 18.1653 0.0028* 4.3056** 

*Means the least MSE for each time series type; **Means the least MAPE for each time series type 

 

ดังนั้นพบว่าวิธี EEMD-ARIMA มีประสิทธิภาพ
ในการพยากรณ์สูงที่สุดสำหรับอนุกรมเวลาที่มีแนวโน้ม
โพลิโนเมียล และมีประสิทธิภาพในการพยากรณ์
อนุกรมเวลาที่มีแนวโน้มโลจิสติกใกล้เคียงกับวิธีบ็อกซ์
และเจนกิ้นส์ด้วยตัวแบบ ARIMA และเมื่อพิจารณา
เฉพาะค่า MSE เพียงอย่างเดียว วิธี EEMD-ARIMA จะ
มีประสิทธิภาพสูงที่สุดในการพยากรณ์อนุกรมเวลาที่มี
แนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังลบ ในขณะที่
ว ิธ ี  EMD-ARIMA มีประส ิทธ ิภาพในการพยากรณ์
อนุกรมเวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียลที ่มีเลขช้ี
กำลังบวกใกล้เคียงกับวิธีบ็อกซ์และเจนกิ้นส์ด้วยตัว
แบบ ARIMA และเมื่อพิจารณาเฉพาะค่า MAPE เพียง
อย่างเดียว วิธี EMD-ARIMA จะมีประสิทธิภาพสูงที่สุด
ในการพยากรณ์อนุกรมเวลาที่มีแนวโน้มเอ็กซ์โปเนน
เชียลที่มีเลขช้ีกำลังลบ 
 

4. สรุปผล อภิปรายผล และข้อเสนอแนะ 
งานวิจัยนี้ได้ศึกษาวิธีการพยากรณ์ 3 วิธี  คือ 

วิธีบ็อกซ์และเจนกิ้นส์ด้วยตัวแบบ ARIMA วิธี EMD-
ARIMA และวิธี EEMD-ARIMA ในการพยากรณ์อนุกรม
เวลาที่มีลักษณะไม่เป็นเชิงเส้นและไม่คงที่ 6 รูปแบบ ที่
จำลองขึ ้นโดยใช้โปรแกรม R ผลการวิจัยพบว่าวิธี 

EEMD-ARIMA มีประสิทธิภาพสูงที่สุดในการพยากรณ์
ในการพยากรณ์อนุกรมเวลาที่มีแนวโน้มโพลิโนเมียล 
และมีประสิทธิภาพในการพยากรณ์ใกล้เคียงกับวิธี  
บ ็อกซ ์และเจนก ิ ้นส ์ด ้วยต ัวแบบ ARIMA ในการ
พยากรณ์อนุกรมเวลาที่มีแนวโน้มโลจิสติก ขณะที่วิธี 
EMD-ARIMA มีประสิทธิภาพในการพยากรณ์ใกล้เคียง
กับวิธีบ็อกซ์และเจนกิ้นส์ด้วยตัวแบบ ARIMA ในการ
พยากรณ์อนุกรมเวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียลที่มี
เลขชี้กำลังบวก ส่วนวิธี EMD-ARIMA และวิธี EEMD-
ARIMA มีประสิทธิภาพในการพยากรณ์อนุกรมเวลาที่มี
แนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังลบที่แตกต่าง
กัน โดยเมื่อพิจารณาเฉพาะคา่ MSE วิธี EEMD-ARIMA 
จะมีประสิทธิภาพในการพยากรณ์อนุกรมเวลาที ่มี
แนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขชี้กำลังลบได้ดีที่สุด 
แต่เมื่อพิจารณาเฉพาะค่า MAPE วิธี EMD-ARIMA จะ
ม ีประส ิทธ ิภาพในการพยากรณ์อนุกรมเวลาที ่มี
แนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขช้ีกำลังลบได้ดีที่สุด 

ยิ่งกว่านั้น ผลการวิจัยพบว่าวิธี EEMD-ARIMA 
มีประสิทธิภาพสูงที่สุดในการพยากรณ์อนุกรมเวลาที่มี
แนวโน้มโพลิโนเมียล และเมื่อพิจารณาจากค่า MSE วิธี 
EEMD-ARIMA ย ังม ีประส ิทธ ิภาพส ูงท ี ่ส ุดในการ
พยากรณ์อนุกรมเวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียลที่มี
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เลขชี้กำลังลบ ซึ่งผลที่ได้มีความสอดคล้องกับงานวิจัย
ของ Min และคณะ [5] ขณะที ่เมื ่อพิจารณาจากค่า 
MAPE วิธ ี EMD-ARIMA จะมีประส ิทธ ิภาพในการ
พยากรณ์สูงที ่ส ุดในการพยากรณ์อนุกรมเวลาที่ มี
แนวโน้มเอ็กซ์โปเนนเชียลที่มีเลขช้ีกำลงัลบ ซึ่งผลที่ไดม้ี
ความสอดคล้องกับงานวิจัยของ Abadan และ Shabri 
[3] กับ Zhou และ Huang [4] 

ข้อสังเกตจากวิธี EMD-ARIMA และ EEMD-
ARIMA คือ วิธีการพยากรณ์ทั้งสองวิธีอาจให้ค่า MSE 
และ MAPE ที ่มากผิดปกติได้ เช่น ในการพยากรณ์
อนุกรมเวลาที่มีแนวโน้มเอ็กซ์โปเนนเชียลที ่มีเลขช้ี
กำล ังบวก และในการพยากรณ์อน ุกรมเวลาที ่มี
แนวโน้มโลจิสติกที่มีเลขชี้กำลังลบ ซึ่งเกิดขึ้นได้อาจ
เนื่องมาจากวิธีท้ังสองมีการพยากรณ์ IMF หลายชุด ทำ
ให้ความคลาดเคลื่อนของการพยากรณ์สะสมเพิ่มขึ้น 
ส่งผลให้ค่า MSE และ MAPE มากผิดปกติ 

งานวิจัยครั้งต่อไปที่มีการใช้วิธี EMD-ARIMA 
และ EEMD-ARIMA ขอเสนอแนะให้จำลองอนุกรม
เวลาที่มีส่วนประกอบของอนุกรมเวลาที่ประกอบด้วย
ฤดูกาล วัฏจักร หรือเหตุการณ์ที่ผิดปกติ หรือจำลอง
อนุกรมเวลาที่มีแนวโน้มอื ่นนอกเหนือจากแนวโน้ม   
โพลิโนเมียล เอ็กซ์โปเนนเชียล และโลจิสติก เช่น 
อนุกรมเวลาที่มีแนวโน้มแบบตรีโกณมิติ และนอกจาก
การแยกส่วนประกอบของอนุกรมเวลาด้วยวิธี EMD 
และ EEMD แล้ว ยังมีวิธีอื่นทีส่ามารถแยกส่วนประกอบ
ของอนุกรมเวลาได้ เช่น วิธี complete ensemble 
empirical mode decomposition with adaptive 
noise (CEEMDAN) และยังมีวิธีการแปลงอนุกรมเวลา
รูปแบบอื่นที่สามารถใช้ร่วมกับวิธีบ็อกซ์และเจนกิ้นส์
ด้วยตัวแบบ ARIMA  เช่น Fourier transformation 
และ Wavelet transformation 
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