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บทคัดย่อ 
งานวิจัยนี้มีวัตถุประสงค์ เพื่อหาขอบเขตบนสำหรับการกระจายตัวของเมทริกซ์เซอร์คูแลนท์และเมทริกซ์อา-

เซอร์คูแลนท์ท่ีมีสมาชิกเป็นลำดับฟีโบนักชีและลำดับลูคัส 
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Abstract 
This research objective is to find upper bounds for the spread of the circulant and r-circulant 

matrices which entries are the Fibonacci and Lucas sequences. 
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1. บทนำ 
เมทริกซ์เซอร์คูแลนท์เป็นเมทริกซ์โทพลิทซ์

ชนิดหนึ่ง ซึ่งนำมาใช้อย่างแพร่หลายในงานวิจัยทาง
คณิตศาสตร์ มีนักวิจัยหลายท่านให้ความสนใจศึกษา
สมบัติของเมทริกซ์เซอร์คูแลนท์และลักษณะทั่วไปของ
เมทริกซ์เซอร์คูแลนท์ สำหรับเมทริกซ์อา-เซอรค์ูแลนท์
ที่มีสมาชิกมาจากลำดับที่รู้จักกันเป็นอย่างดีนั ้น พบ
มากในการศึกษาหลากหลาย อาทิ การประมวลผล
สัญญาณ การประมวลผลภาพดิจิทัล ทฤษฎีรหัส และ
การพยากรณ์เชิงเส้น 

การกระจายตัวของเมทริกซ์ คือ ระยะทางที่
มากที่สุดระหว่างค่าเฉพาะคู่ใด ๆ ของเมทริกซ์ ซึ่งการ
กระจายตัวของเมทริกซ์นั้นกล่าวถึงครั้งแรกในปี ค.ศ.
1956 โดย Mirsky [1] หลังจากนั้นมีนักวิจัยหลายทา่น
ได้ศึกษาเกี ่ยวกับขอบเขตของการกระจายตัวของ    
เมทริกซ์ เช่น ในปี ค.ศ. 1985 Johnson และคณะ ได้
ให้ขอบเขตล่างสำหรับการกระจายตัวของเมทริกซ์ปกติ
ใด ๆ [2] ต่อมาในปี ค.ศ. 1997 Jiang และ Zhan ได้
แสดงขอบเขตล่างสำหรับการกระจายตัวของเมทริกซ์
เฮอร์มิเทียน [3] จากนั้นในปี ค.ศ. 2012 Wu และคณะ 
ได้ให้ขอบเขตบนสำหรับการกระจายตัวของเมทริกซ์  
ใด ๆ [4] และในปี ค.ศ. 2013 Sharma และ Kumar 
ได้ให้ข้อสังเกตของขอบเขตบนสำหรับการกระจายตัว
ของเมทริกซ์ใด ๆ [5] 

การทบทวนวรรณกรรมที ่ผ ่านมา พบว่าใน
ปัจจุบันไม่มีการศึกษาเกี่ยวกับขอบเขตบนสำหรับการ
กระจายตัวของเมทริกซ์เซอร์คูแลนท์และเมทริกซ์    
อา-เซอร์คูแลนท์ ผู้วิจัยจึงสนใจศึกษาหาค่าขอบเขตบน
สำหรับการกระจายตัวของเมทริกซ์เซอร์คูแลนท์และ
เมทริกซ์อา-เซอร์คูแลนท์ที่มีสมาชิกเป็นลำดับฟีโบนักชี 
และลำดับลูคัส 
 

2. ความรู้พื้นฐาน 

หัวข้อนี้ผู้วิจัยจะกล่าวถึงบทนิยามและผลลัพธ์
ของงานวิจัยที่เกี่ยวข้อง ตลอดงานวิจัยนี้ผู้วิจัยให้ ℕ 
แทนเซตของจำนวนเต็มบวก ℂ แทนเซตของจำนวน
เชิงซ้อน และ ℂ𝑛×𝑛  แทนเซตของเมทริกซ์ขนาด 
𝑛 × 𝑛 ที่มีสมาชิกเป็นจำนวนเชิงซ้อน 
บทนิยาม 2.1 [1]  กำหนดให้  𝐴 ∈ ℂ𝑛×𝑛  เป็นเมท
ริกซ์ที ่มีค่าเฉพาะ 𝜆𝑝 เมื ่อ 𝑝 ∈ {1,2,3, … , 𝑛} การ
กระจายต ัวของเมทร ิกซ์  𝐴 น ิยามโดย  𝑠(𝐴) =

max
1≤𝑘,𝑙≤𝑛

|𝜆𝑘 − 𝜆𝑙| 

บทนิยาม 2.2 [6] นอร์มโฟรเบนิอุ หรือนอร์มแบบยุค
ล ิด ค ือ นอร ์มของเมทร ิกซ์   𝐴 = (𝑎𝑝𝑞)

𝑛×𝑛
∈

ℂ𝑛×𝑛 ที่นิยามโดย ‖𝐴‖𝐹 = √∑ ∑ |𝑎𝑝𝑞|
2𝑛

𝑞=1
𝑛
𝑝=1  

หรือ ‖𝐴‖𝐹 = √tr(𝐴𝐴∗) เมื่อ tr(𝐴𝐴∗) คือ รอย
ของเมทริกซ์ 𝐴𝐴∗ หรือผลบวกของสมาชิกที่อยู่บนเส้น
ทแยงมุมหลักของเมทริกซ์ 𝐴𝐴∗ และ 𝐴∗ คือ เมทริกซ์
สลับเปลี่ยนสังยุคของ 𝐴 

บทนิยาม 2.3 [7] เมทริกซ์ 𝐶𝑛 ∈ ℂ𝑛×𝑛 เร ียกว่า  
เมทริกซ์เซอร์คูแลนท์ ถ้า 
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ซึ่งเห็นได้ว่าเมทริกซ์เซอร์คูแลนท์กำหนดโดยสมาชิกใน
แถวที่หนึ่ง ได้แก่ 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛−1  ผู้วิจัยเขียน
แทน เมทร ิ ก ซ ์ เ ซ อ ร ์ ค ู แ ลนท ์  𝐶𝑛 ด ้ ว ย  𝐶𝑛 =

Circ(𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑛−1) และเมทร ิกซ ์ เซอร ์คู
แลนท์ มีสมบัติต่อไปนี้ [7-9] 

1. เมทร ิกซ ์เซอร ์ค ูแลนท์ท ุกเมทร ิกซ ์ เป็น     
เมทริกซ์ปกติ 

2. 
1

22
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n

n pF
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C n c
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=

=   

3. |tr(𝐶𝑛)|   = 𝑛|𝑐0| 
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4. ค่าเฉพาะของเมทริกซ์เซอร์คูแลนท์สามารถ

หาได้โดย ( )
1

0

n p
q

q p
p

c w
−

=

=   โดยที่ 
2 i

nw e



= =  

2 2
cos sini

n n
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   

 และ 𝑞 ∈ {1,2,3, . . . , 𝑛} 

บทนิยาม 2.4 [7] เมทริกซ์ 𝐶𝑛,𝑟 ∈ ℂ𝑛×𝑛 เรียกว่า 
เมทริกซ์อา-เซอร์คูแลนท์ ถ้า 
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เมื ่อ  𝑟 ∈ ℂ  ซึ ่งเห็นได้ว่าเมทริกซ์อา-เซอร์คูแลนท์
กำหนดโดยสมาชิกในแถวที่หนึ่ง ได้แก่  𝑐0, 𝑐1, 𝑐2,  
… , 𝑐𝑛−1 และพารามิเตอร์ 𝑟 ผ ู ้ว ิจ ัยจะเขียนแทน    
เ มทร ิ กซ ์ อา - เ ซอร ์ ค ู แลนท ์  𝐶𝑛,𝑟 ด ้ วย  𝐶𝑛,𝑟 =

𝑟Circ(𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛−1) และเมทริกซ์อา-เซอร์คู
แลนท์มีสมบัติต่อไปนี้ [7-9] 

1. ( )
1 12 22 2

,
0 0

n n

n r p pF p p

C n p c p r c
− −

= =

= − +    

2. ( ), 0tr n rC n c=   

บทนิยาม 2.5 [8] ลำดับฟีโบนักชี  
0



=n n
F  และ

ลำดับลูคัส  
0



=n n
L   คือ ลำดับที่นิยามด้วยความ 

สัมพันธ์เวียนเกิด 0 1 1 20, 1, n n nF F F F F− −= = = +   
สำหร ับ 𝑛 = 2,3,4, … และ  0 12, 1,L L= =   

1 2n n nL L L− −= +  สำหรับ 𝑛 = 2,3,4, … 

จากบทนิยาม 2.5 จะได้ลำดับฟีโบนักชีและ
ลำดับลูคัส ดังนี้ 

n  0 1 2 3 4 5 6 7 8 9 … 

nF  0 1 1 2 3 5 8 13 21 34 … 

nL  2 1 3 4 7 11 18 29 47 76 … 

สมบัติต่อไปนี้เป็นสมบัติที่รู ้จักกันดีของลำดับ 
ฟีโบนักชีและลำดับลูคัส [8] 

1
2

1
0

n

p n n
p

F F F
−

−
=

=  สำหรับ 𝑛 ≥ 1           (0.1) 
1

2

1
0

2
n

p n n
p

L L L
−

−
=

= +  สำหรับ 𝑛 ≥ 1    (0.2) 

ในปี ค.ศ. 2013 Sharma และ Kumar [5] ได้
แสดงขอบเขตบนสำหรับการกระจายตัวของเมทรกิซ ์𝐴 
ที่มขีนาด 𝑛 × 𝑛 ใด ๆ ดังทฤษฎีบทต่อไปนี้ 

( ) ( )

1
2 4

222 * *2
2 tr 2

F F
s A A A AA A A

n
 − − −
  
  
   

(0.3)  

ถ้า 𝐴 ถูกแบ่งกั้นให้อยู่ในรูป 
P B

A
C Q

=
 
 
 

 เมื่อ 𝑃 เป็น

เมทริกซ์ย่อยของ 𝐴 ที่มีขนาด 𝑘 × 𝑘 แล้วจะได้ว่า 

( ) ( ) ( )
222 2

2 tr 2
F F F

s A A A B C
n

 − − −  (0.4) 

 
3. ผลการวิจัย 

หัวข้อนี้ผู้วิจัยได้แสดงขอบเขตบนสำหรับการ
กระจายตัวของเมทริกซ์เซอร์คูแลนท์และเมทริกซ์อา-
เซอร์คูแลนท์ที่มีสมาชิกเป็นลำดับฟีโบนักชีและลำดับ 
ลูคัส 

สำหรับบทแทรก 3.1 เป็นการหาขอบเขตบน
สำหรับการกระจายตัวของเมทริกซ์เซอร์คูแลนท์ที่มี
สมาชิกเป็นลำดับฟีโบนักชี โดยการประยุกต์ใช้ทฤษฎี
บท 2.1 
บทแทรก  3 .1 กำหนดให ้  𝑛 ∈ ℕ และ  𝐶𝑛 =

Circ(𝐹0, 𝐹1, 𝐹2, … , 𝐹𝑛−1) เป ็นเมทร ิกซ ์ เซอร ์ คู
แลนท์ขนาด 𝑛 × 𝑛 ที ่มีสมาชิกเป็นลำดับฟีโบนักชี 
แล้วจะได้ว่า 

𝑠(𝐶𝑛) ≤ √2𝑛𝐹𝑛𝐹𝑛−1                    (1.1) 

พิสูจน์ เนื่องด้วย 
12 2

0

n

n pF
p

C n F
−

=

=   และจากสมบตัิ

ของลำดับฟีโบนักชี (2.1) จะได้ว่า 
12 2

0

n

n pF
p

C n F
−

=

= 

1n nn F F −=  และ ( ) 0tr 0nC nF= =  
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เนื่องด้วยเมทริกซ์เซอร์คูแลนท์เป็นเมทริกซ์ปกติ นั่นคือ 
* *

n n n nC C C C=  ดังนั้นจะได้ว่า 
2

* *
0n n n n F

C C C C− =  

จากสมการ (2.3) จะได ้

( ) ( )

1
2 4222 *2 *

2 tr 2n n n n n n nF
F

s C C C C C C C
n

 − − −
  
  
   

 

( ) ( )

1
2 4

1

2
2 0 2 0n nnF F

n
−= − −

  
  
   

 

12 n nnF F −=                                                         

ตัวอย่าง 3.1  กำหนดให้ 4C  เป็นเมทริกซ์เซอร์        
คูแลนท์ขนาด 4 4  ที ่มีสมาชิกเป็นลำดับฟีโบนักชี 

นั่นคือ 4
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2 0 1 1

1 2 0 1

1 1 2 0

C =

 
 
 
 
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จากบทนิยาม 2.1 จะได้ 
𝑠(𝐶4) = max

1≤ 𝑘,𝑙 ≤4
|𝜆𝑘 − 𝜆𝑙| = 6 

จากบทแทรก 3.1 จะได ้
𝑠(𝐶4) ≤ 6.9282                                       

𝑠(𝐶4) = max
1≤ 𝑘,𝑙 ≤4

|𝜆𝑘 − 𝜆𝑙| = 6 

สำหรับบทแทรก 3.2 เป็นการหาขอบเขตบน
สำหรับการกระจายตัวของเมทริกซ์เซอร์คูแลนท์ ที่มี
สมาชิกเป็นลำดับ ลูคัส โดยการประยุกต์ใช้ทฤษฎีบท 
2.1 
บทแทรก 3.2 กำหนดให ้   𝑛 ∈ ℕ  และ 𝐶𝑛 =

Circ(𝐿0, 𝐿1, 𝐿2, … , 𝐿𝑛−1) เป ็น เมทร ิกซ ์ เซอร ์คู
แลนท์ขนาด 𝑛 × 𝑛 ที่มีสมาชิกเป็นลำดับลูคัส แล้วจะ
ได้ว่า 

( ) ( )12 2n n ns C n L L − −               (1.2) 

พิสูจน์ เนื่องด้วย 
12 2

0

n

n pF
p

C n L
−

=

=   และจากสมบัติ

ของลำดับลูคัส (2.2) จะได้ว่า 
12 2

0

n

n pF
p

C n L
−

=

=   

1 2n nn L L n−= +  แ ล ะ  ( ) 0tr 2nC nL n= =  

เนื่องด้วยเมทริกซ์เซอร์คูแลนท์เป็นเมทริกซ์ปกติ นั่นคือ 
* *

n n n nC C C C=  ดังนั้นจะได้ว่า 
2

* *
0n n n n F

C C C C− =  

จากอสมการ (2.3) จะได ้

( ) ( )

1
2 4

222 * *2
2 tr 2n n n n n n nF F

s C C C C C C C
n

 − − −
  
  
   

 

( )

1
2 4

2

1

2
2 4 2 2 0n nnL L n n

n
−= + − −

  
  
   

 

12 4 8n nnL L n n−= + −  

( )12 2n nn L L −= −                                  

ตัวอย่าง 3.2 กำหนดให้ 4C  เป็นเมทริกซ์เซอร์คู
แลนท์ขนาด 4 4  ที่มีสมาชิกเป็นลำดับลูคัส น่ันคือ 

4

2 1 3 4

4 2 1 3

3 4 2 1

1 3 4 2

C =

 
 
 
 
  

 

จากบทนิยาม 2.1 จะได ้
𝑠(𝐶4) = max

1≤ 𝑘,𝑙 ≤4
|𝜆𝑘 − 𝜆𝑙| = 11.4018 

จากบทแทรก 3.2 จะได ้

( )4 14.4222s C                  
  
 

สำหรับทฤษฎีบท 3.3 เป็นการหาขอบเขตบน
สำหรับการกระจายตัวของเมทริกซ์อา-เซอร์คูแลนท์ที่มี
สมาชิกเป็นลำดับฟีโบนักชี 
ทฤษฎ ีบท 3.3 กำหนดให ้  𝑛 ∈ ℕ, 𝑟 ∈ ℂ และ 
𝐶𝑛,𝑟 = 𝑟Circ(𝐹0, 𝐹1, 𝐹2 … , 𝐹𝑛−1) เป็นเมทริกซ์
อา-เซอร์คูแลนท์ขนาด 𝑛 × 𝑛 ที่มีสมาชิกเป็นลำดับ  

ฟีโบนักชี แล้วจะได้ว่า ( ),n rs C   

( ) ( )

1

1 21 22 2 2

1
0 1

2 2 1 2 1
n qn

n n p p
p q p q

nF F r pF r F
 − + −−

−
= = =

+ − − −  
  

    
 

( )

1
2 4

2

1

2
2 4 2 2 0n nnL L n n

n
−= + − −

  
  
   

 

12 4 8n nnL L n n−= + −  
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( )12 2n nn L L −= −                                  

ตัวอย่าง 3.2 กำหนดให้ 4C  เป็นเมทริกซ์เซอร์คู
แลนท์ขนาด 4 4  ที่มีสมาชิกเป็นลำดับลูคัส น่ันคือ 

4

2 1 3 4

4 2 1 3

3 4 2 1

1 3 4 2

C =

 
 
 
 
  

 

จากบทนิยาม 2.1 จะได้ 
 𝑠(𝐶4) = max

1≤ 𝑘,𝑙 ≤4
|𝜆𝑘 − 𝜆𝑙| = 11.4018 

จากบทแทรก 3.2 จะได้ 
( )4 14.4222s C                                     

  
 

สำหรับทฤษฎีบท 3.3 เป็นการหาขอบเขตบน
สำหรับการกระจายตัวของเมทริกซ์อา-เซอร์คูแลนท์ที่มี
สมาชิกเป็นลำดับฟีโบนักชี 
ทฤษฎ ีบท 3.3 กำหนดให้  𝑛 ∈ ℕ, 𝑟 ∈ ℂ และ 
𝐶𝑛,𝑟 = 𝑟Circ(𝐹0, 𝐹1, 𝐹2 … , 𝐹𝑛−1) เป ็นเมทร ิกซ์
อา-เซอร์คูแลนท์ขนาด 𝑛 × 𝑛 ที่มีสมาชิกเป็นลำดับ  

ฟีโบนักชี แล้วจะได้ว่า ( ),n rs C   

( ) ( )

1

1 21 22 2 2

1
0 1

2 2 1 2 1
n qn

n n p p
p q p q

nF F r pF r F
 − + −−

−
= = =

+ − − −  
  

    
 

เมื่อ      𝛼 = {
    

𝑛

2
      ; 𝑛  เป็นจำนวนคู่

𝑛±1

2
  ; 𝑛  เป็นจำนวนคี่

 

พิสูจน์ เนื่องด้วย 

( )
1 12 22 2

,
0 0

n n

n r p pF p p

C n p F p r F
− −

= =

= − +   
1 1 1 22 2 2

0 0 0

n n n

p p p
p p p

n F pF p r F
− − −

= = =

= − +    

( )
1 122 2

0 0

1
n n

p p
p p

n F r pF
− −

= =

= + −   

และจากสมบัติของลำดับฟีโบนักชี (2.1) 
1

2

0

n

p
p

F
−

=



1n nF F −=  จะได้ว่า 
2

, 1n r n nF
C nF F −=  

( )
12 2

0

1
n

p
p

r pF
−

=

+ −   นอกจากน้ี ( ), 0tr 0n rC nF= =  

จากการแบ่งกั้นเมทริกซ์ให้อยู่ในรูป ,n r

P X
C

Y Q
=
 
 
 

  

โดยที่ P  เป็นเมทริกซ์ย ่อยที ่มีขนาด k k  และ 

1 k n   จะได้ 
1

2

1

,
n k qk

pF
q p q

X F
− + −

= =

=      

1
2

1

n k qk

pF
q p q

Y r F
− + −

=

= =

   

ดังนั้น ( ) ( )
12 2 2

1

1
n k qk

pF F
q p q

X Y r F
− + −

= =

− = −  
 
 
 

 

นอกจากนี้ สังเกตได้ว่า ถ้า P เป็นเมทริกซ์ย่อยที่มี
ขนาด ( ) ( )n k n k−  −   และ 1 k n   จะได้ว่า 

( ) ( )
12 2 2

1

1
k qn k

pF F
q p q

X Y r F
+ −−

= =

− = −  
 
 
 

 

( )
1 12 2 2 2

1 2

1
k k n

p p p
p p p n k

r F F F
+ −

= = = −

= − + + +  
 
 
 

 

( )
1 12 2 2 2

1 2

1
k k n

p p p
p p p n k

r F F F
+ −

= = = −

= − + + +  
 
 
 

 

( )
12 2

1

1
n k qk

p
q p q

r F
− + −

= =

= −  
 
 
 

 

นั่นคือ ถ้าเมทริกซ์ถูกแบ่งกั้นให้อยู่ในรูป ,n r

P X
C

Y Q
=
 
 
 

 

โดยที่ P  เป็นเมทริกซ์ย่อยที ่มีขนาด k k  หรือ 

( ) ( )n k n k−  −  แล้ว ( )
2

F F
X Y− =

( )
12 2

1

1
n k qk

p
q p q

r F
− + −

= =

−  
 
 
 

 ถ้าให้ 
 

( )
2

k F F
X Y = −

 
และเนื่องด้วย สำหรับ 1 k n  ; k n k  −=  จะได้
ว ่ า  𝛽1 = 𝛽𝑛−1 < 𝛽2 = 𝛽𝑛−2 < ⋯ < 𝛽𝛼  เ มื่ อ 

𝛼 = {
    

𝑛

2
      ; 𝑛  เป็นจำนวนคู่

𝑛±1

2
  ; 𝑛  เป็นจำนวนคี่

 

ดังนั้น ถ้า 𝑛 เป็นจำนวนคู่แล้ว ( )
2

F F
X Y−  จะ

มีค่ามากสุดเมื่อ 
2

n
k =  และถ้า 𝑛 เป็นจำนวนคี่ แล้ว 

( )
2

F F
X Y−  จะมีค่ามากสุดเมื่อ 

1

2

n
k

+
=  หรือ 

1

2

n
k

−
=  นั่นคือ ( )

2

F F
X Y− = ( )

12 2

1

1
n q

p
q p q

r F
 − + −

= =

−  
 
 
 

 

เมื่อ 𝛼 = {
    

𝑛

2
      ; 𝑛  เป็นจ ำนวนคู่

𝑛±1

2
  ; 𝑛  เป็นจ ำนวนคี่
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จากอสมการ (2.4) จะได้ ( ),n rs C   

( ) ( )
2 22

, ,

2
2 tr 2n r n r F FF

C C X Y
n

− − −  

( ) ( )

1

1 21 22 2 2

1
0 1

2 1 2 1
n qn

n n p p
p q p q

nF F r pF r F
 − + −−

−
= = =

= + − − −  
    
        

 

เมื่อ 𝛼 = {
    

𝑛

2
      ; 𝑛  เป็นจำนวนคู่

𝑛±1

2
  ; 𝑛  เป็นจำนวนคี่

                        

ตัวอย่าง 3.3 กำหนดให้ 𝐶4,𝑟 เป็นเมทริกซ์อา-เซอร์   
คูแลนท์ขนาด 4 × 4 ที่มีสมาชิกเป็นลำดับฟีโบนักชี 
นั่นคือ 

4,

0 1 1 2

2 0 1 1

1 2 0 1

1 1 2 0

r

r
C

r r

r r r


=

 

  

 
 
 
 
  

 

ถ้า 2r = แล้วจากบทนิยาม 2.1 จะได้ 𝑠(𝐶4,2) ≈

9.1056 และจากทฤษฎีบท 3.3 จะได้ 𝑠(𝐶4,2) ≤

11.1355 
ถ้า 𝑟 =

1

2
 แล้วจากบทนิยาม 2.1 จะได้ 𝑠 (𝐶

4,
1

2

) ≈

4.0602 และจากทฤษฎีบท 3.3 จะได้ 𝑠 (𝐶
4,

1

2

) ≤

4.6904  
ถ ้ า  𝑟 = 1 + 𝑖 แล ้ วจ ากบทน ิ ย าม  2 . 1  จะ ได้  
𝑠(𝐶4,1+𝑖) ≈ 7.2497 และจากทฤษฎีบท 3.3 จะได้ 
𝑠(𝐶4,1+𝑖) ≤ 8.6947                                            

สำหรับทฤษฎีบทสุดท้ายของงานวิจัย เป็นการ
หาขอบเขตบนสำหรับการกระจายตัวของเมทริกซ์อา-
เซอร์คูแลนท์ที่มีสมาชิกเป็นลำดับลูคัส 
ทฤษฎ ีบท 3.4 กำหนดให ้  𝑛 ∈ ℕ, 𝑟 ∈ ℂ และ 
𝐶𝑛,𝑟 = 𝑟Circ(𝐿0, 𝐿1, 𝐿2, … , 𝐿𝑛−1) เป็นเมทริกซ์
อา-เซอร์คูแลนท์ขนาด 𝑛 × 𝑛 ที่มีสมาชิกเป็นลำดับ 

ลูคัส แล้วจะได้ว่า ( ),n rs C   

( ) ( ) ( )

1

1 21 22 2 2

1
0 1

2 2 2 1 2 1
n qn

n n p p
p q p q

n L L r pL r L
 − + −−

−
= = =

− + − − −  
  

    
 

เมื่อ 𝛼 = {
    

𝑛

2
      ; 𝑛  เป็นจำนวนคู่

𝑛±1

2
  ; 𝑛  เป็นจำนวนคี่

 

 

พิสูจน์ เนื่องด้วย ( )
2 1 1 22 2

,
0 0

F

n n

n r p p
p p

C n p L p r L
− −

= =

= − +   

1 1 1 22 2 2

0 0 0

n n n

p p p
p p p

n L pL p r L
− − −

= = =

= − +  

      
 

( )
1 122 2

0 0

1
n n

p p
p p

n L r pL
− −

= =

= + −    

และจากสมบัติของลำดับลูคัส (2.2) 
1

1
2

0

2
n

n

p n
p

L L L
−

−

=

= +  

จะได้ว่า ( ) ( )
12 2 2

, 1
0

2 1
n

n r n n pF p

C n L L r pL
−

−
=

= + + −   

นอกจากนี้ ( ), 0tr 2n rC nL n= =  จากการแบ่งกั้น

เมทริกซ์ให้อยู ่ในรูป ,n r

P X
C

Y Q
=
 
 
 

 โดยที่ P  เป็น

เมทริกซ์ย่อยที่มีขนาด k k  และ 1 k n   จะไดว้่า 
1 1

2 2

1 1

,
n k q n k qk k

p pF F
q p q q p q

X L Y r L
− + − − + −

= = = =

= =   

ดังนั้น ( ) ( )
12 2 2

1

1
n k qk

pF F
q p q

X Y r L
− + −

= =

− = −  
 
 
 

นอกจากนี้ สังเกตได้ว่า ถ้า P  เป็นเมทริกซ์ย่อยที่มี
ขนาด ( ) ( )n k n k−  −  และ 1 k n   จะได้ว่า 

( ) ( )
12 2 2

1

1
k qn k

pF F
q p q

X Y r L
+ −−

= =

− = −  
 
 
 

 

( )
1 12 2 2 2

1 2

1
k k n

p p p
p p p n k

r L L L
+ −

= = = −

= − + + +  
 
 
 

 

( )
1 12 2 2 2

1 2

1
n k n k n

p p p
p p p k

r L L L
− − + −

= = =

= − + + +  
 
 
 

 

( )
12 2

1

1
n k qk

p
q p q

r L
− + −

= =

= −  
 
 
 

 

นั่นคือ ถ้าเมทริกซ์ถูกแบ่งกั้นให้อยูใ่นรูป ,n r

P X
C

Y Q
=
 
 
 

 

โดยที่ P  เป็นเมทริกซ์ย่อยท่ีมีขนาด k k  หรือ 

( ) ( )n k n k−  −  แล้ว ( ) ( )
12 2 2

1

1
n k qk

pF F
q p q

X Y r L
− + −

= =

− = −  
 
 
 

 

ถ้าให้ ( )
2

k F F
X Y = −  และเนื่องด้วย สำหรับ 

1 k n  ; k n k  −=  จะได้ว่า 1 1 2 2n n     − −=  =    

เมื่อ 𝛼 = {
    

𝑛

2
      ; 𝑛  เป็นจำนวนคู่

𝑛±1

2
  ; 𝑛  เป็นจำนวนคี่
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ดังนั้นถ้า n  เป็นจำนวนคู่แล้ว ( )
2

F F
X Y−  จะ

มีค่ามากสุดเมื่อ 
2

n
k =  และถ้า n  เป็นจำนวนคี่แล้ว 

( )
2

F F
X Y−  จะมีค่ามากสุดเมื่อ 1

2

n
k

+
=  หรือ 

1

2

n
k

−
=  นั่นคือ ( ) ( )

12 2 2

1

1
n q

pF F
q p q

X Y r L
 − + −

= =

− = −  
 
 
 

 

เมื่อ 𝛼 = {
    

𝑛

2
      ; 𝑛  เป็นจำนวนคู่

𝑛±1

2
  ; 𝑛  เป็นจำนวนคี่

 

 

จากอสมการ (2.4) จะได้ว่า ( ),n rs C  ( ) ( )
2 22

, ,

2
2 tr 2n r n r F FF

C C X Y
n

− − −  

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 21 22 2 2 2

1
0 1

1

1 21 22 2 2

1
0 1

2
2 2 1 4 2 1

2 2 2 1 2 1

n qn

n n p p
p q p q

n qn

n n p p
p q p q

n L L r pL n r L
n

n L L r pL r L





− + −−

−
= = =

− + −−

−
= = =

= + + − − − −  

= − + − − −  

    
        

  
    

 

 
ตัวอย่าง 3.4 กำหนดให้ 

4,rC  เป็นเมทริกซ์อา-เซอร์คู

แลนท์ขนาด 4 4  ที่มีสมาชิกเป็นลำดับลูคัส น่ันคือ 

4,

2 1 3 4

4 2 1 3

3 4 2 1

1 3 4 2

r

r
C
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ถ้า 2r = แล้วจากบทนิยาม 2.1 จะได้ 𝑠(𝐶4,2) ≈

17.3114 และจากทฤษฎีบท 3.4 จะได้ 𝑠(𝐶4,2) ≤

23.2379 

ถ้า 
1

2
r =  แล้วจากบทนิยาม 2.1 จะได้ 𝑠 (𝐶

4,
1

2

) ≈

7.6187 และจากทฤษฎีบท 3.4 จะได้ 𝑠 (𝐶
4,

1

2

) ≤

9.4868 
ถ ้ า  1r i= +  แ ล ้ ว จ า ก บ ทน ิ ย า ม  2 . 1  จ ะ ไ ด้  
𝑠(𝐶4,1+𝑖) ≈ 14.8698 และจากทฤษฎีบท 3.4 จะ
ได้ 𝑠(𝐶4,1+𝑖) ≤ 18.1656                            
 

4. สรุป 
แรงจูงใจของงานวิจัยนี้เกิดจากงานวิจัยของ

นักวิจัยหลายท่าน โดยเฉพาะงานวิจัยของ Sharma 
และ Kumar [5] ซ ึ ่งให้ข ้อส ังเกตของขอบเขตบน

สำหรับการกระจายตัวของเมทริกซ์ใด ๆ การศึกษา
งานวิจัยดังกล่าว ทำให้ผู้วิจัยต้องการศึกษาขอบเขตบน
สำหรับการกระจายตัวของเมทริกซ์เซอร์คูแลนท์และ
เมทริกซ์อา-เซอร์คูแลนท์ โดยผู้วิจัยได้ให้สมาชิกของ
เมทริกซ์เซอร์คูแลนท์และเมทริกซ์อา-เซอร์คูแลนท์ 
เป็นลำดับฟีโบนักชีและลำดับลูคัส ผลของการวิจัยทำ
ให้ได้ขอบเขตบนสำหรับการกระจายตัวของเมทริกซ์
เซอร์คูแลนท์และเมทริกซ์อา-เซอร์คูแลนท์ที่มีสมาชิก
เป็นลำดับฟีโบนักชี ดังบทแทรก 3.1 และทฤษฎีบท 
3.3 ตามลำดับ และผู้วิจัยได้ขอบเขตบนสำหรับการ
กระจายตัวของเมทริกซ์เซอร์คูแลนท์และเมทริกซ์อา-
เซอร์คูแลนท์ที่มีสมาชิกเป็นลำดบัลูคัส ดังบทแทรก 3.2 
และทฤษฎีบท 3.4 ตามลำดับ 
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