P-ISSN 0858-4435
E-ISSN 2651-1231

NsarsImenmansuazmalulad  Homepage : http:/1i01.tci-thaijo.org/index.php/tstj
Uil 30 atuil 1 Ginsen-quATELS 2565) i [1-16]

AnsUszUNAIMUULUE Lae Tdaunaud S Ins Inaa-aamned
VDINTTHANLAINULUALUUN 2
Bayesian Estimation using Metropolis-Hastings Algorithm

of Gumbel Type-Il Distribution

LAY AIEINA¥, Ansnad GEIGIM

S5efnA ATled, SeassA Uselaigusans

F1vIVIndamIaNTUsEaNA AayINeImanTuaziAlulad

UMINIFEIETIUMENT Unais1id 12120
Monthira Duangsaphon*, Pattharapong Surasen,
Jeerasak Sriyothee, Rangsan Prasoednorasan
Department of Mathematics and Statistics, Faculty of Science and Technology,
Thammasat University, Pathum Thani 12120
Received 29 June 2020; Received in revised from 25 March 2021; Accepted 12 July 2021

UNANED

AT TaUszasdiflenSeuiieudssAninmmesnisUssnummsfineieisnisuuuiudues
MsuaNkasuUaLUUT 2 v 4 35 WWud dupeuituivslvda-usafaduuudasy duneuiBiuinsinda
wuiRudy dunouiBuilnsinda-usafsduuudassUssandldsmiumadensesnauuuivd uasdunouis
winsindauvuiiuguussgndlisiuiunsdendiesguwuuivd tnewSeuiisulssaninmuesiauseann
shemmnuraaedouiidiaeanisanmdassiomaiaueuiclanieldaniunsaifisidimnimes
V93U 0.5, 1, 2, 3 uag 4 Wsfiwesuwuawiiiu 0.5, 1 uay 2 aafieg1awiiiu 20, 50 way
100 wagMsuINUAIiaUTDN AR N ITINDSFoMIuINLaNLLN uenandufideseiis 4 FBuuspend
Titutoyasts nansfnwilagaguanmssiassnelfaniuniseiing q TnsdulnyduneuiBulnsTndauuy
WudunatumeuditulnsTnda-usafsduuudaszsdssndlismiuniadendedswuuivdlissansnmn
wnfign wasraInnsUssgnaldtudeyatmuitunouitiulnslnda ueafsduuudassussgndldamiy

nsidenmegsuuivdliuseansamunnian

v v
[

AdAy: waudanslalduninen; Tuneudtulvsinda-usafsduuudasy; JunowiBwinsindauuiugy;
AsiaenNFBg 1L UUAVE

*Q’%’Uﬁﬂ‘vauuwmmz monthira.stat@gmail.com doi: 10.14456/1stj.2022.1



Thai Science and Technology Journal Vol. 30 No. 1 January-February 2022

Abstract

This research aims to compare the performance of the parameter estimation by the Bayesian
approach of the Gumbel type-Il distribution on four methods, namely independent metropolis-hast-
ings algorithm, random walk metropolis algorithm, independent metropolis-hastings algorithm with
Gibbs sampling, and random walk metropolis algorithm with Gibbs sampling. The comparison among
methods is made in terms of the mean square errors based on the Monte Caro simulation technique.
The shape parameters were chosen to be 0.5, 1, 2, 3, and 4, the scale parameters were chosen to
be 0.5, 1, and 2 and the sample sizes were chosen to be 20, 50, and 100. The prior distribution of
both parameters was assumed to be the Gamma distribution. Moreover, we apply four methods for
real data. The findings show that the random walk metropolis algorithm and the independent
metropolis-hastings algorithm with Gibbs sampling present the best performance in most cases
under a simulation study. For real data, the independent metropolis-hastings algorithm with Gibbs
sampling offers the best performance.
Keywords: Markov chain Monte Carlo; Independent metropolis-hastings algorithm; Random walk

metropolis algorithm; Gibbs sampling
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Table 1 Average of estimates and MSE for £=0.5, different values of & and different sample sizes

Methods

MLE IMH RWM IMHG RWMG

a B a B a B a B a B
0.5 | 20 | 05401 | 0.5042 | 0.5323 | 0.5110 | 0.5317 | 0.5121 | 0.5324 | 0.5111 | 0.5328 | 0.5107

0.0129 | 0.0240 | 0.0104 | 0.0190 | 0.0103 | 0.0190 | 0.0104 | 0.0190 | 0.0109 | 0.0193

50 | 0.5117 | 0.5037 | 0.5094 | 0.5072 | 0.5096 | 0.5067 | 0.5095 | 0.5069 | 0.5097 | 0.5068

0.0038 | 0.0098 | 0.0035 | 0.0090 | 0.0035 | 0.0088 | 0.0035 | 0.0089 | 0.0040 | 0.0095

100 | 0.5059 | 0.5040 | 0.5050 | 0.5058 | 0.5050 | 0.5056 | 0.5051 | 0.5056 | 0.5059 | 0.5047

0.0016 | 0.0044 | 0.0016 | 0.0043 | 0.0016 | 0.0042 | 0.0016 | 0.0042 | 0.0020 | 0.0046

1 20 | 1.0625 | 0.5057 | 1.0487 | 0.5119 | 1.0473 | 0.5130 | 1.0481 | 0.5123 | 1.0477 | 0.5125

0.0446 | 0.0224 | 0.0369 | 0.0178 | 0.0362 | 0.0177 | 0.0368 | 0.0178 | 0.0366 | 0.0177

50 | 1.0318 | 0.4972 | 1.0271 | 0.5007 | 1.0272 | 0.5007 | 1.0274 | 0.5006 | 1.0276 | 0.5005

0.0147 | 0.0092 | 0.0137 | 0.0084 | 0.0136 | 0.0084 | 0.0137 | 0.0084 | 0.0143 | 0.0085

100 | 1.0153 | 0.4982 | 1.0131 | 0.5002 | 1.0133 | 0.5001 | 1.0132 | 0.5001 | 1.0136 | 0.4999

0.0064 | 0.0043 | 0.0064 | 0.0042 | 0.0062 | 0.0041 | 0.0063 | 0.0041 | 0.0067 | 0.0042

2 20 | 2.0564 | 0.5009 | 2.0468 | 0.5044 | 2.0479 | 0.5040 | 2.0480 | 0.5042 | 2.0482 | 0.5040

0.0623 | 0.0104 | 0.0578 | 0.0095 | 0.0575 | 0.0094 | 0.0578 | 0.0094 | 0.0583 | 0.0095

50 | 2.1328 | 0.5041 | 2.1023 | 0.5112 | 2.1011 | 0.5117 | 2.1041 | 0.5107 | 2.1038 | 0.5109

0.1816 | 0.0245 | 0.1486 | 0.0194 | 0.1467 | 0.0192 | 0.1488 | 0.0193 | 0.1493 | 0.0193

100 | 2.0247 | 0.5017 | 2.0204 | 0.5040 | 2.0209 | 0.5035 | 2.0213 | 0.5033 | 2.0213 | 0.5034

0.0270 | 0.0043 | 0.0263 | 0.0042 | 0.0262 | 0.0042 | 0.0261 | 0.0041 | 0.0266 | 0.0042

3 20 | 3.1878 | 0.5111 | 3.1460 | 0.5173 | 3.1419 | 0.5181 | 3.1450 | 0.5172 | 3.1476 | 0.5168

0.4367 | 0.0234 | 0.3591 | 0.0187 | 0.3566 | 0.0186 | 0.3602 | 0.0186 | 0.3594 | 0.0185

50 | 3.0817 | 0.5015 | 3.0687 | 0.5049 | 3.0681 | 0.5050 | 3.0679 | 0.5048 | 3.0695 | 0.5046

0.1290 | 0.0096 | 0.1208 | 0.0088 | 0.1192 | 0.0087 | 0.1183 | 0.0087 | 0.1199 | 0.0087

100 | 3.0435 | 0.4999 | 3.0374 | 0.5019 | 3.0372 | 0.5019 | 3.0376 | 0.5017 | 3.0385 | 0.5016

0.0587 | 0.0041 | 0.0572 | 0.0040 | 0.0564 | 0.0039 | 0.0569 | 0.0039 | 0.0569 | 0.0039

4 20 | 4.3063 | 0.5038 | 4.2454 | 0.5107 | 4.2414 | 0.5116 | 4.2453 | 0.5108 | 4.2447 | 0.5108

0.7800 | 0.0238 | 0.6402 | 0.0189 | 0.6332 | 0.0188 | 0.6359 | 0.0188 | 0.6384 | 0.0188

50 | 4.1399 | 0.5016 | 4.1247 | 0.5046 | 4.1214 | 0.5049 | 4.1227 | 0.5048 | 4.1208 | 0.5051

0.2494 | 0.0098 | 0.2303 | 0.0090 | 0.2294 | 0.0089 | 0.2303 | 0.0089 | 0.2312 | 0.0089

100 | 4.0219 | 0.5061 | 4.0164 | 0.5076 | 4.0151 | 0.5076 | 4.0150 | 0.5077 | 4.0143 | 0.5078

0.0964 | 0.0042 | 0.0962 | 0.0041 | 0.0932 | 0.0040 | 0.0938 | 0.0040 | 0.0934 | 0.0041
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Table 2 Average of estimates and MSE for g =1, different values of a and different sample sizes

Methods

MLE IMH RWM IMHG RWMG

a B a B o B a B a B
0.5 | 20 | 0.5152 | 1.0149 | 0.5133 | 1.0136 | 0.5132 | 1.0126 | 0.5134 | 1.0129 | 0.5132 | 1.0128

0.0039 | 0.0233 | 0.0037 | 0.0217 | 0.0037 | 0.0217 | 0.0037 | 0.0217 | 0.0039 | 0.0219

50 | 0.5361 | 1.0433 | 0.5299 | 1.0348 | 0.5298 | 1.0354 | 0.5298 | 1.0355 | 0.5294 | 1.0357

0.0120 | 0.0756 | 0.0124 | 0.0627 | 0.0104 | 0.0627 | 0.0104 | 0.0626 | 0.0107 | 0.0631

100 | 0.5052 | 1.0078 | 0.5044 | 1.0070 | 0.5044 | 1.0068 | 0.5043 | 1.0069 | 0.5036 | 1.0076

0.0016 | 0.0114 | 0.0016 | 0.0112 | 0.0016 | 0.0110 | 0.0016 | 0.0110 | 0.0021 | 0.0114

1.0 | 20 | 1.0715 | 1.0334 | 1.0587 | 1.0267 | 1.0582 | 1.0267 | 1.0585 | 1.0262 | 1.0587 | 1.0262

0.0488 | 0.0818 | 0.0423 | 0.0680 | 0.0421 | 0.0677 | 0.0421 | 0.0676 | 0.0431 | 0.0677

50 | 1.0288 | 1.0131 | 1.0246 | 1.0112 | 1.0250 | 1.0110 | 1.0248 | 1.0112 | 1.0264 | 1.0107

0.0148 | 0.0249 | 0.0141 | 0.0234 | 0.0141 | 0.0233 | 0.0140 | 0.0232 | 0.0147 | 0.0233

100 | 1.0144 | 1.0059 | 1.0129 | 1.0049 | 1.0127 | 1.0048 | 1.0129 | 1.0049 | 1.0126 | 1.0050

0.0065 | 0.0117 | 0.0064 | 0.0116 | 0.0063 | 0.0113 | 0.0063 | 0.0113 | 0.0066 | 0.0114

20 | 20 | 2.1685 | 1.0411 | 2.1417 | 1.0332 | 2.1423 | 1.0343 | 2.1424 | 1.0334 | 2.1408 | 1.0338

0.1989 | 0.0781 | 0.1723 | 0.0649 | 0.1734 | 0.0650 | 0.1727 | 0.0645 | 0.1723 | 0.0646

50 | 2.0562 | 1.0113 | 2.0477 | 1.0094 | 2.0487 | 1.0092 | 2.0485 | 1.0094 | 2.0480 | 1.0096

0.0537 | 0.0232 | 0.0512 | 0.0215 | 0.0510 | 0.0216 | 0.0510 | 0.0217 | 0.0511 | 0.0216

100 | 2.0241 | 1.0126 | 2.0209 | 1.0117 | 2.0204 | 1.0119 | 2.0203 | 1.0118 | 2.0219 | 1.0114

0.0245 | 0.0119 | 0.0245 | 0.0116 | 0.0238 | 0.0116 | 0.0239 | 0.0115 | 0.0244 | 0.0116

3.0 | 20 | 3.2351 | 1.0275 | 3.1973 | 1.0214 | 3.1977 | 1.0210 | 3.1974 | 1.0211 | 3.1963 | 1.0211

0.4120 | 0.0685 | 0.3580 | 0.0570 | 0.3585 | 0.0571 | 0.3575 | 0.0569 | 0.3587 | 0.0568

50 | 3.0735 | 1.0117 | 3.0637 | 1.0095 | 3.0621 | 1.0097 | 3.0623 | 1.0098 | 3.0607 | 1.0099

0.1273 | 0.0247 | 0.1226 | 0.0232 | 0.1211 | 0.0231 | 0.1212 | 0.0231 | 0.1219 | 0.0231

100 | 3.0164 | 1.0132 | 3.0116 | 1.0123 | 3.0111 | 1.0122 | 3.0111 | 1.0123 | 3.0107 | 1.0124

0.0542 | 0.0113 | 0.0539 | 0.0111 | 0.0530 | 0.0109 | 0.0533 | 0.0109 | 0.0533 | 0.0109

4.0 | 20 | 4.3286 | 1.0354 | 4.2741 | 1.0284 | 4.2748 | 1.0289 | 4.2743 | 1.0286 | 4.2756 | 1.0285

0.8622 | 0.0707 | 0.7512 | 0.0591 | 0.7507 | 0.0590 | 0.7513 | 0.0589 | 0.7515 | 0.0589

50 | 4.0924 | 1.0168 | 4.0763 | 1.0153 | 4.0775 | 1.0147 | 4.0765 | 1.0148 | 4.0772 | 1.0147

0.2096 | 0.0237 | 0.2011 | 0.0223 | 0.1993 | 0.0222 | 0.1996 | 0.0221 | 0.1996 | 0.0221

100 | 4.0583 | 1.0048 | 4.0500 | 1.0042 | 4.0513 | 1.0039 | 4.0513 | 1.0040 | 4.0516 | 1.0040

0.0981 | 0.0116 | 0.0963 | 0.0113 | 0.0960 | 0.0112 | 0.0956 | 0.0112 | 0.0960 | 0.0112
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Table 3 Average of estimates and MSE for g =2, different values of a and different sample sizes

Methods

MLE IMH RWM IMHG RWMG

a B a B a B a B a B
0.5 | 20 | 0.5376 | 2.1880 | 0.5306 | 2.1405 | 0.5306 | 2.1412 | 0.5305 | 2.1400 | 0.5311 | 2.1423

0.0124 | 0.4588 | 0.0106 | 0.3357 | 0.0105 | 0.3416 | 0.0105 | 0.3384 | 0.0114 | 0.3449

50 | 0.5153 | 2.0643 | 0.5135 | 2.0533 | 0.5134 | 2.0531 | 0.5132 | 2.0529 | 0.5131 | 2.0530

0.0035 | 0.1008 | 0.0033 | 0.0941 | 0.0033 | 0.0933 | 0.0033 | 0.0934 | 0.0037 | 0.0941

100 | 0.5074 | 2.0322 | 0.5063 | 2.0270 | 0.5065 | 2.0271 | 0.5065 | 2.0273 | 0.5055 | 2.0259

0.0017 | 0.0467 | 0.0016 | 0.0450 | 0.0016 | 0.0452 | 0.0016 | 0.0450 | 0.0020 | 0.0452

1.0 | 20 | 1.0649 | 2.1882 | 1.0518 | 2.1426 | 1.0517 | 2.1436 | 1.0520 | 2.1439 | 1.0521 | 2.1439

0.0413 | 0.4017 | 0.0354 | 0.3030 | 0.0352 | 0.3053 | 0.0353 | 0.3050 | 0.0360 | 0.3055

50 | 1.0306 | 2.0758 | 1.0267 | 2.0635 | 1.0266 | 2.0646 | 1.0265 | 2.0641 | 1.0267 | 2.0642

0.0161 | 0.1138 | 0.0154 | 0.1056 | 0.0153 | 0.1059 | 0.0153 | 0.1051 | 0.0157 | 0.1057

100 | 1.0141 | 2.0310 | 1.0123 | 2.0261 | 1.0124 | 2.0260 | 1.0123 | 2.0260 | 1.0108 | 2.0250

0.0066 | 0.0449 | 0.0065 | 0.0437 | 0.0065 | 0.0434 | 0.0065 | 0.0433 | 0.0069 | 0.0430

2.0 20 | 2.1568 | 2.1909 | 2.1275 | 2.1430 | 2.1284 | 2.1440 | 2.1279 | 2.1419 | 2.1280 | 2.1421

0.1939 | 0.4758 | 0.1650 | 0.3422 | 0.1651 | 0.3465 | 0.1644 | 0.3404 | 0.1646 | 0.3405

50 | 2.0579 | 2.0783 | 2.0493 | 2.0664 | 2.0500 | 2.0671 | 2.0499 | 2.0665 | 2.0480 | 2.0660

0.0587 | 0.1175 | 0.0559 | 0.1082 | 0.0557 | 0.1083 | 0.0557 | 0.1084 | 0.0559 | 0.1080

100 | 2.0301 | 2.0318 | 2.0263 | 2.0276 | 2.0265 | 2.0269 | 2.0266 | 2.0269 | 2.0261 | 2.0269

0.0255 | 0.0475 | 0.0251 | 0.0468 | 0.0250 | 0.0461 | 0.0249 | 0.0459 | 0.0253 | 0.0460

3.0 | 20 | 3.2306 | 2.1864 | 3.1878 | 2.1419 | 3.1895 | 2.1443 | 3.1888 | 2.1426 | 3.1891 | 2.1426

0.4386 | 0.3733 | 0.3761 | 0.2877 | 0.3771 | 0.2898 | 0.3791 | 0.2873 | 0.3767 | 0.2873

50 | 3.0785 | 2.0544 | 3.0662 | 2.0446 | 3.0667 | 2.0434 | 3.0673 | 2.0436 | 3.0656 | 2.0433

0.1324 | 0.1068 | 0.1271 | 0.1009 | 0.1260 | 0.0989 | 0.1260 | 0.0991 | 0.1265 | 0.0996

100 | 3.0435 | 2.0336 | 3.0387 | 2.0291 | 3.0378 | 2.0287 | 3.0382 | 2.0287 | 3.0387 | 2.0287

0.0587 | 0.0433 | 0.0581 | 0.0425 | 0.0572 | 0.0420 | 0.0573 | 0.0419 | 0.0577 | 0.0418

40 | 20 | 4.2705 | 21973 | 4.2151 | 2.1468 | 4.2152 | 2.1499 | 4.2141 | 2.1476 | 4.2146 | 2.1475

0.7570 | 0.4911 | 0.6401 | 0.3455 | 0.6453 | 0.3498 | 0.6432 | 0.3458 | 0.6406 | 0.3443

50 | 4.0966 | 2.0613 | 4.0806 | 2.0502 | 4.0803 | 2.0510 | 4.0805 | 2.0501 | 4.0816 | 2.0504

0.2224 | 0.1035 | 0.2126 | 0.0974 | 0.2114 | 0.0965 | 0.2120 | 0.0961 | 0.2120 | 0.0964

100 | 4.0580 | 2.0336 | 4.0516 | 2.0291 | 4.0504 | 2.0288 | 4.0509 | 2.0287 | 4.0515 | 2.0287

0.1043 | 0.0433 | 0.1033 | 0.0425 | 0.1017 | 0.0420 | 0.1020 | 0.0419 | 0.1019 | 0.0418
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