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Abstract
	 This research objective is to find upper and lower bounds for the spectral norms, 1-norm, 

and ∞-norm of symmetric r-circulant and symmetric geometric circulant matrices with the  

hyperharmonic Fibonacci numbers. Furthermore, some examples and numerical results for  

demonstrating the validity of the hypotheses of our results are demonstrated.

Keywords:	 Symmetric r-circulant matrix; Symmetric geometric circulant matrix; Hyperharmonic Fi 

		  bonacci number; Matrix norm 

1. บทนำ
	 เมทริกิซ์เ์ซอร์คู์ูแลนท์แ์ละเมทริกิซ์อ์าร์-์เซอร์คู์ูแลนท์์ 

ถููกนำไปประยุุกต์์ใช้้กัับหลากหลายปััญหา อาทิิเช่่น 

กระบวนการส่่งสััญญาณ ความน่่าจะเป็็น การวิิเคราะห์์

เชิิงตััวเลข และทฤษฎีีรหััส ช่่วงเวลาที่่�ผ่่านมามีีผู้้�วิจััย

หลายท่่านได้้ศึึกษาเมทริิกซ์์เซอร์์คููแลนท์์และเมทริิกซ์์

อาร์์-เซอร์์คููแลนท์์ที่่�เกี่่�ยวข้้องกัับจำนวนต่่างๆ ในปีี ค.ศ. 

2015 Tuglu และ Kızılates ได้้ศึกึษานอร์มของเมทริิกซ์์

เซอร์์คููแลนท์์และเมทริิกซ์์อาร์์-เซอร์์คููแลนท์์ที่่�มีีสมาชิิก

เป็็นจำนวนไฮเพอร์ฮาร์์มอนิกฟีีโบนักชีี [1] ต่่อมาในปีี 

ค.ศ. 2016 Sintunavarat ได้้ประมาณค่าขอบเขตบน

ของนอร์์มสเปกตรััมของเมทริิกซ์์อาร์์-เซอร์์คููแลนท์์ และ

เมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตรที่่�มีีสมาชิิกเป็็นลำดัับ

พาโดแวน [2] จากนั้้�นในปีี ค.ศ. 2018 Tuglu และ 

Kızılates ได้้ให้้ขอบเขตบนและขอบเขตล่่างของนอร์ 

มสเปกตรััมของเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิต และ 

เมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิตสมมาตรที่่�มีีสมาชิิก

เป็็นจำนวนไตรโบนัักชีี [3]

	 จากการทบทวนวรรณกรรมที่่�ผ่่านมา ผู้้�วิิจััยพบ

ว่่าในปััจจุุบัันยัังไม่่มีีการศึึกษาขอบเขตบนและขอบเขต

ล่่างของนอร์์ม สเปกตรััม 1-นอร์์ม และ ∞-นอร์์ม ของ 

เมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตร และเมทริิกซ์์เซอร์์ 

คููแลนท์์เชิิงเรขาคณิตสมมาตรที่่�มีีสมาชิิกเป็็นจำนวน 

ไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี

2. ความรู้้�พื้้�นฐาน
	หั ัวข้้อนี้้�ผู้้�วิจััยจะกล่่าวถึึงบทนิิยามและผลลััพธ์์

ของงานวิจิัยัที่่�เกี่่�ยวข้อ้ง ตลอดงานวิจิัยันี้้�ผู้้�วิจิัยัให้ ้  แทน

เซตของจำนวนเชิิงซ้้อน และ  แทนเซตของ 

เมทริิกซ์์ขนาด  ที่่�มีีสมาชิิกเป็็นจำนวนเชิิงซ้้อน

	 ในปีี  ค.ศ. 1202 เลโอนาร์์โด ฟีี โบนักชีี  

(Leonardo Fibonacci) นักคณิตศาสตร์์ชาวอิิตาลีี ได้้

เขีียนหนัังสืือเกี่่�ยวกัับการคิิดคำนวณชื่่�อ The Book of 

Abacus ในหนัังสืือเล่่มนี้้�มีีโจทย์์ปััญหาข้้อหนึ่่�งซึ่่�งเป็็นที่่�

รู้้�จัักกัันอย่่างดีี คืือ ปััญหาจำนวนกระต่่ายในทุ่่�งหญ้้า ซึ่่�ง

ปััญหานี้้�ทำให้้ได้้รููปแบบของจำนวนชุุดหนึ่่�งที่่�เรีียงเป็็น

ลำดับั ดังันี้้� 1, 1, 2, 3, 5, 8, 13, … ลำดับัดังักล่า่วในเวลา

ต่่อมารู้้�จัักอย่่างกว้้างขวางว่่า ลำดัับฟีีโบนัักชีี

	 จำนวนฟีีโบนัักชีี ถููกกำหนดโดยความสััมพัันธ์์

เวีียนเกิิดดัังนี้้� สำหรัับจำนวนเต็็ม 

เมื่่�อ   และ  ซึ่่�งเรีียงเป็็นลำดัับดัังนี้้� 

ในบทความวิิจััย [4] Tuglu Kızılates และ Kesim ได้้

ทำการศึกึษาสมบััติติ่า่งๆ ของผลบวกจำกััดของส่่วนกลัับ

ของจำนวนฟีีโบนัักชีี
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เรีียกว่่า จำนวน  ฮาร์์มอนิิกฟีีโบนัักชีี ( -th Harmonic 

Fibonacci numbers) ซึ่่�งเรีียงเป็็นลำดัับดัังนี้้� 

 

 

และนอกจากนี้้�พวกเขาได้้นิิยาม จำนวนไฮเพอร์์ฮาร์์- 

มอนิิกฟีีโบนัักชีี (Hyperharmonic Fibonacci  

numbers) สำหรัับจำนวนเต็็ม 

เมื่่�อ  และ  สำหรับั  และ

ถ้้า  แล้้วจะได้้ลำดัับของจำนวนไฮเพอร์ฮาร์์- 

มอนิิกฟีีโบนัักชีีดัังนี้้�

 

 

หมายเหตุุ ในกรณีีที่่�  จะได้้ว่่าจำนวนไฮเพอร์์ฮาร์์

มอนิิกฟีีโบนัักชีี เป็็นจำนวน  ฮาร์์มอนิิกฟีีโบนัักชีี

บทนิิยาม 2.1 [5] เมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตร 

(Symmetric -circulant matrix) คืือ เมทริิกซ์์ขนาด 

 ที่่�นิิยามโดย บทนิยาม 2.1 [5]  เมทริกซ์อาร์-เซอร์คูแลนท์สมมาตร (Symmetric 𝑟𝑟-circulant matrix) คือ เมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 ที่
นิยามโดย 

𝑆𝑆𝑆𝑆𝑟𝑟 =

(

  
  
𝑐𝑐0    𝑐𝑐1  𝑐𝑐2
𝑐𝑐1    𝑐𝑐2   𝑐𝑐3
𝑐𝑐2     𝑐𝑐3   𝑐𝑐4

    
⋯ 𝑐𝑐𝑛𝑛−2     𝑐𝑐𝑛𝑛−1
⋯ 𝑐𝑐𝑛𝑛−1      𝑟𝑟𝑐𝑐0
 ⋯  𝑟𝑟𝑐𝑐0      𝑟𝑟𝑐𝑐1

  ⋮    ⋮   ⋮
𝑐𝑐𝑛𝑛−2 𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0
𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0 𝑟𝑟𝑐𝑐1

    
⋱  ⋮     ⋮   
⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−4 𝑟𝑟𝑐𝑐𝑛𝑛−3
⋯ 𝑟𝑟𝑐𝑐𝑛𝑛−3 𝑟𝑟𝑐𝑐𝑛𝑛−2)

  
 

 

 
เม่ือ 𝑟𝑟, 𝑐𝑐𝑖𝑖 ∈ ℂ สำหรับทุก 𝑖𝑖 = 0, …𝑛𝑛 − 1 และเขียนแทนด้วย 𝑆𝑆𝑆𝑆𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛−1)            
บทนิยาม 2.2 [3] เมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร (Symmetric geometric circulant matrix) คือ เมทริกซ์
ขนาด 𝑛𝑛 × 𝑛𝑛 ที่นิยามโดย 

𝑆𝑆𝑆𝑆𝑟𝑟∗ =

(

 
 
 

𝑐𝑐0    𝑐𝑐1    𝑐𝑐2         
𝑐𝑐1    𝑐𝑐2     𝑐𝑐3          
𝑐𝑐2     𝑐𝑐3      𝑐𝑐4          

 
⋯       𝑐𝑐𝑛𝑛−2           𝑐𝑐𝑛𝑛−1   
⋯   𝑐𝑐𝑛𝑛−1     𝑟𝑟𝑐𝑐0    
 ⋯      𝑟𝑟𝑐𝑐0        𝑟𝑟2𝑐𝑐1   

  ⋮        ⋮   ⋮
𝑐𝑐𝑛𝑛−2 𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0
𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0 𝑟𝑟2𝑐𝑐1

    
  ⋱          ⋮       ⋮   
⋯ 𝑟𝑟𝑛𝑛−3𝑐𝑐𝑛𝑛−4 𝑟𝑟𝑛𝑛−2𝑐𝑐𝑛𝑛−3
⋯ 𝑟𝑟𝑛𝑛−2𝑐𝑐𝑛𝑛−3 𝑟𝑟𝑛𝑛−1𝑐𝑐𝑛𝑛−2)

 
 
 

 

เม่ือ 𝑟𝑟, 𝑐𝑐𝑖𝑖 ∈ ℂ สำหรับทุก 𝑖𝑖 = 0, …𝑛𝑛 − 1 และเขียนแทนด้วย 𝑆𝑆𝑆𝑆𝑟𝑟∗ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟∗(𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛−1) 
บทตั้ง 2.3 [4] รากที่สองของผลบวกของกำลังสองของจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนักชี สอดคล้องอสมการต่อไปนี้ 

1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1) ≤ √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
≤ 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

บทนิยาม 2.4 [6] กำหนดให้ 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖) ∈ ℂ𝑛𝑛×𝑛𝑛 เป็นเมทริกซ์ใด ๆ  
1. นอร์มแบบยุคลิด (Euclidean norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

‖𝐴𝐴‖𝐸𝐸 = √∑∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 

2. นอร์มสเปกตรัม (Spectral norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

‖𝐴𝐴‖2 = √max1≤𝑖𝑖≤𝑛𝑛
𝜆𝜆𝑖𝑖(𝐴𝐴𝐻𝐻𝐴𝐴) 

เม่ือ 𝜆𝜆𝑖𝑖(𝐴𝐴𝐻𝐻𝐴𝐴) เป็นค่าเฉพาะของเมทริกซ์ 𝐴𝐴𝐻𝐻𝐴𝐴 และ 𝐴𝐴𝐻𝐻 เป็นเมทริกซ์สลับเปล่ียนสังยุคของ 𝐴𝐴  
3. นอร์มความยาวแถวสูงสุด (Maximum row length norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
 

4. นอร์มความยาวหลักสูงสุด (Maximum column length norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛 √∑|𝑏𝑏𝑖𝑖𝑖𝑖|

2
𝑛𝑛

𝑗𝑗=1
 

5. 1-นอร์ม (1-norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

เมื่่�อ  สำหรับัทุกุ  และเขียีน 

แทนด้้วย 

บทนิิยาม 2.2 [3] เมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิต

สมมาตร (Symmetric geometric circulant matrix) 

คืือ เมทริิกซ์์ขนาด  ที่่�นิิยามโดย

บทนิยาม 2.1 [5]  เมทริกซ์อาร์-เซอร์คูแลนท์สมมาตร (Symmetric 𝑟𝑟-circulant matrix) คือ เมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 ที่
นิยามโดย 

𝑆𝑆𝑆𝑆𝑟𝑟 =

(

  
  
𝑐𝑐0    𝑐𝑐1  𝑐𝑐2
𝑐𝑐1    𝑐𝑐2   𝑐𝑐3
𝑐𝑐2     𝑐𝑐3   𝑐𝑐4

    
⋯ 𝑐𝑐𝑛𝑛−2     𝑐𝑐𝑛𝑛−1
⋯ 𝑐𝑐𝑛𝑛−1      𝑟𝑟𝑐𝑐0
 ⋯  𝑟𝑟𝑐𝑐0      𝑟𝑟𝑐𝑐1

  ⋮    ⋮   ⋮
𝑐𝑐𝑛𝑛−2 𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0
𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0 𝑟𝑟𝑐𝑐1

    
⋱  ⋮     ⋮   
⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−4 𝑟𝑟𝑐𝑐𝑛𝑛−3
⋯ 𝑟𝑟𝑐𝑐𝑛𝑛−3 𝑟𝑟𝑐𝑐𝑛𝑛−2)

  
 

 

 
เม่ือ 𝑟𝑟, 𝑐𝑐𝑖𝑖 ∈ ℂ สำหรับทุก 𝑖𝑖 = 0, …𝑛𝑛 − 1 และเขียนแทนด้วย 𝑆𝑆𝑆𝑆𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛−1)            
บทนิยาม 2.2 [3] เมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร (Symmetric geometric circulant matrix) คือ เมทริกซ์
ขนาด 𝑛𝑛 × 𝑛𝑛 ที่นิยามโดย 

𝑆𝑆𝑆𝑆𝑟𝑟∗ =

(

 
 
 

𝑐𝑐0    𝑐𝑐1    𝑐𝑐2         
𝑐𝑐1    𝑐𝑐2     𝑐𝑐3          
𝑐𝑐2     𝑐𝑐3      𝑐𝑐4          

 
⋯       𝑐𝑐𝑛𝑛−2           𝑐𝑐𝑛𝑛−1   
⋯   𝑐𝑐𝑛𝑛−1     𝑟𝑟𝑐𝑐0    
 ⋯      𝑟𝑟𝑐𝑐0        𝑟𝑟2𝑐𝑐1   

  ⋮        ⋮   ⋮
𝑐𝑐𝑛𝑛−2 𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0
𝑐𝑐𝑛𝑛−1 𝑟𝑟𝑐𝑐0 𝑟𝑟2𝑐𝑐1

    
  ⋱          ⋮       ⋮   
⋯ 𝑟𝑟𝑛𝑛−3𝑐𝑐𝑛𝑛−4 𝑟𝑟𝑛𝑛−2𝑐𝑐𝑛𝑛−3
⋯ 𝑟𝑟𝑛𝑛−2𝑐𝑐𝑛𝑛−3 𝑟𝑟𝑛𝑛−1𝑐𝑐𝑛𝑛−2)

 
 
 

 

เม่ือ 𝑟𝑟, 𝑐𝑐𝑖𝑖 ∈ ℂ สำหรับทุก 𝑖𝑖 = 0, …𝑛𝑛 − 1 และเขียนแทนด้วย 𝑆𝑆𝑆𝑆𝑟𝑟∗ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟∗(𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛−1) 
บทตั้ง 2.3 [4] รากที่สองของผลบวกของกำลังสองของจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนักชี สอดคล้องอสมการต่อไปนี้ 

1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1) ≤ √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
≤ 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

บทนิยาม 2.4 [6] กำหนดให้ 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖) ∈ ℂ𝑛𝑛×𝑛𝑛 เป็นเมทริกซ์ใด ๆ  
1. นอร์มแบบยุคลิด (Euclidean norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

‖𝐴𝐴‖𝐸𝐸 = √∑∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 

2. นอร์มสเปกตรัม (Spectral norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

‖𝐴𝐴‖2 = √max1≤𝑖𝑖≤𝑛𝑛
𝜆𝜆𝑖𝑖(𝐴𝐴𝐻𝐻𝐴𝐴) 

เม่ือ 𝜆𝜆𝑖𝑖(𝐴𝐴𝐻𝐻𝐴𝐴) เป็นค่าเฉพาะของเมทริกซ์ 𝐴𝐴𝐻𝐻𝐴𝐴 และ 𝐴𝐴𝐻𝐻 เป็นเมทริกซ์สลับเปล่ียนสังยุคของ 𝐴𝐴  
3. นอร์มความยาวแถวสูงสุด (Maximum row length norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
 

4. นอร์มความยาวหลักสูงสุด (Maximum column length norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛 √∑|𝑏𝑏𝑖𝑖𝑖𝑖|

2
𝑛𝑛

𝑗𝑗=1
 

5. 1-นอร์ม (1-norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

เมื่่�อ  สำหรับัทุกุ  และเขียีน 

แทนด้ว้ย  

บทตั้้�ง 2.3 [4] รากที่่�สองของผลบวกของกำลัังสองของ

จำนวนไฮเพอร์ฮาร์์มอนิิกฟีีโบนัักชีี สอดคล้องอสมการ 

ต่่อไปนี้้�

บทนิิยาม 2.4 [6] กำหนดให้้ 

เป็็นเมทริิกซ์์ใดๆ 

	 1. นอร์์มแบบยุุคลิิด (Euclidean norm) ของ

เมทริิกซ์์  นิิยามโดย

	 2.	 นอร์์มสเปกตรััม (Spectral norm) ของ 

เมทริิกซ์์  นิิยามโดย

	 เมื่่�อ  เป็็นค่่าเฉพาะของเมทริิกซ์์ 

 และ  เป็็นเมทริิกซ์์สลัับเปลี่่�ยนสัังยุุคของ 

	 3. นอร์ม์ความยาวแถวสูงูสุดุ (Maximum row 

length norm) ของเมทริิกซ์์  นิิยามโดย
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	 4. นอร์์มความยาวหลัักสููงสุุด (Maximum 

column length norm) ของเมทริิกซ์์  นิิยามโดย

	 5. 1-นอร์์ม (1-norm) ของเมทริิกซ์์  นิิยาม

โดย

	 6. ∞-นอร์์ม (∞-norm) ของเมทริิกซ์์  นิิยาม

โดย

บทตั้้�ง 2.5 [6] กำหนดให้ ้  เป็น็เมทริกิซ์ใ์ดๆ 

                     (1) 

บทนิยิาม  2.6  [6] กำหนดให้ ้ 

 เป็็นเมทริิกซ์์ใดๆ จะได้้ว่่า ผลคููณฮาดามาร์์ด 

(Hadamard product) ของ  และ  คืือ เมทริิกซ์์ที่่�

นิิยามโดย 

บทตั้้�ง 2.7 [6] กำหนดให้ ้  เป็น็เมทริกิซ์์

ใดๆ จะได้้ว่่า

3. ผลการวิิจััย
	หั ัวข้้อนี้้�ผู้้�วิิจััยได้้แสดงขอบเขตบนและขอบเขต

ล่า่งของนอร์มสเปกตรัมั 1-นอร์ม์ และ-นอร์ม์ของเมทริกิซ์์

อาร์-์เซอร์ค์ูแูลนท์ส์มมาตร และเมทริกิซ์เ์ซอร์ค์ูแูลนท์เ์ชิงิ

เรขาคณิตสมมาตร ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์ ์

มอนิิกฟีีโบนัักชีี 

	ส ำหรับทฤษฎีีบท 3.1 เป็็นการหาขอบเขตบน 

และขอบเขตล่่างของนอร์มสเปกตรััมของเมทริิกซ์์อาร์์-

เซอร์์คููแลนท์์สมมาตรที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์

มอนิิกฟีีโบนัักชีี

ทฤษฎีีบท 3.1 ให้้  เป็็นเมทริิกซ์์อาร์์-เซอร์คููแลนท์์สมมาตร

ขนาด  จะได้้ว่่า

	 (i) ถ้้า  แล้้ว

	 (ii) ถ้้า  แล้้ว

พิิสููจน์์ ให้้  เป็็นเมทริิกซ์์อาร์์-เซอร์คููแลนท์์สมมาตรขนาด  

 นั่่�นคืือ

‖𝐴𝐴‖1 = max
1≤𝑗𝑗≤𝑛𝑛

∑|𝑎𝑎𝑖𝑖𝑖𝑖|
𝑛𝑛

𝑖𝑖=1
 

6. ∞-นอร์ม (∞-norm) ของเมทริกซ์ 𝐴𝐴 นิยามโดย 

‖𝐴𝐴‖∞ = max1≤𝑖𝑖≤𝑛𝑛
∑|𝑎𝑎𝑖𝑖𝑖𝑖|
𝑛𝑛

𝑗𝑗=1
 

บทตั้ง 2.5 [6] กำหนดให้ 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 เป็นเมทริกซ์ใด ๆ  
                                               1√𝑛𝑛 ‖𝐴𝐴‖𝐸𝐸 ≤ ‖𝐴𝐴‖2 ≤ ‖𝐴𝐴‖𝐸𝐸                                                    (1)                                       

                                         
 

บทนิยาม 2.6 [6] กำหนดให้
 
𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖), 𝐵𝐵 = (𝑏𝑏𝑖𝑖𝑖𝑖) ∈ ℂ𝑛𝑛×𝑛𝑛 เป็นเมทริกซ์ใด ๆ จะได้ว ่า ผลคูณฮาดามาร์ด 

(Hadamard product) ของ 𝐴𝐴 และ 𝐵𝐵 คือ เมทริกซ์ที่นิยามโดย 𝐴𝐴 ∘ 𝐵𝐵 = (𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖) ∈ ℂ𝑛𝑛×𝑛𝑛             
บทตั้ง 2.7 [6] กำหนดให้ 𝐴𝐴, 𝐵𝐵 ∈ ℂ𝑛𝑛×𝑛𝑛 เป็นเมทริกซ์ใด ๆ จะได้ว่า 

‖𝐴𝐴 ∘ 𝐵𝐵‖2 ≤ 𝑟𝑟1(𝐴𝐴)𝑐𝑐1(𝐵𝐵) 

3. ผลการวิจัย 
 หัวข้อนี้ผู้วิจัยได้แสดงขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัม 1-นอร์ม และ -นอร์มของเมทริกซ์อาร์-
เซอร์คูแลนท์สมมาตร และเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชี  
 สำหรับทฤษฎีบท 3.1 เป็นการหาขอบเขตบน และขอบเขตล่างของนอร์มสเปกตรัมของเมทริกซ์อาร์-เซอร์คูแลนท์
สมมาตรที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชี 
ทฤษฎีบท 3.1 ให้ 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝔽𝔽0

(𝑘𝑘), 𝔽𝔽1
(𝑘𝑘), 𝔽𝔽2

(𝑘𝑘), … , 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ) เป็นเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 

𝑛𝑛 × 𝑛𝑛 จะได้ว่า 
 (i) ถ้า |𝑟𝑟| ≥ 1 แล้ว 

1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1) ≤ ‖𝑆𝑆𝑆𝑆𝑟𝑟

(𝑘𝑘)‖
2
≤ √1 + (𝑛𝑛 − 1)|𝑟𝑟|2 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

 (ii) ถ้า |𝑟𝑟| < 1 แล้ว 
|𝑟𝑟|
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1) ≤ ‖𝑆𝑆𝑆𝑆𝑟𝑟

(𝑘𝑘)‖
2
≤ √𝑛𝑛 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

พิสูจน์  ให้ 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝔽𝔽0
(𝑘𝑘), 𝔽𝔽1

(𝑘𝑘), 𝔽𝔽2
(𝑘𝑘), … , 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) ) เป็นเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 𝑛𝑛 × 𝑛𝑛 
นั่นคือ 

𝑆𝑆𝑆𝑆𝑟𝑟
(𝑘𝑘) =

(

 
 
 
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)

𝔽𝔽2
(𝑘𝑘)   𝔽𝔽3

(𝑘𝑘) 𝔽𝔽4
(𝑘𝑘)
    
⋯ 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) 𝔽𝔽𝑛𝑛−1
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘)

⋯  𝑟𝑟𝑟𝑟0
(𝑘𝑘) 𝑟𝑟𝑟𝑟1

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝑟𝑟𝑟𝑟0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘) 𝑟𝑟𝑟𝑟1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−4

(𝑘𝑘) 𝑟𝑟𝑟𝑟𝑛𝑛−3
(𝑘𝑘)

⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−3
(𝑘𝑘) 𝑟𝑟𝑟𝑟𝑛𝑛−2

(𝑘𝑘) )

 
 
 
 
 

 

จากบทนิยาม 2.4 (1) จะได้ว่ากำลังสองของนอร์มแบบยุคลิดของ 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) คือ 

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖𝐸𝐸
2
= ∑(𝑠𝑠 + 1)(𝔽𝔽𝑠𝑠(𝑘𝑘))

2
+∑(𝑛𝑛 − 𝑠𝑠 − 1)|𝑟𝑟|2(𝔽𝔽𝑠𝑠(𝑘𝑘))

2
𝑛𝑛−2

𝑠𝑠=0

𝑛𝑛−1

𝑠𝑠=0
 

 
 



Thai Science and Technology Journal	 Vol. 30 No. 2 March-April 2022

114

จากบทนิิยาม 2.4 (1) จะได้้ว่่ากำลัังสองของนอร์์มแบบยุุคลิิดของ  คืือ

	 (i) สำหรัับกรณีี  จะได้้

จากบทตั้้�ง 2.3 จะได้้ 

และจากอสมการ (1) จะได้้ 

                                                                                                    (2)

	 ให้้  และ  เป็็นเมทริิกซ์์ขนาด  โดยที่่�

                                           = ∑(𝑠𝑠 + 1)(𝔽𝔽𝑠𝑠(𝑘𝑘))
2
+∑(𝑛𝑛 − 𝑠𝑠 − 1)|𝑟𝑟|2(𝔽𝔽𝑠𝑠(𝑘𝑘))

2
+ 𝑛𝑛

𝑛𝑛−2

𝑠𝑠=0

𝑛𝑛−2

𝑠𝑠=0
(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2

 

(i) สำหรับกรณี |𝑟𝑟| ≥ 1 จะได้ 

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖𝐸𝐸 ≥ √∑(𝑠𝑠 + 1)(𝔽𝔽𝑠𝑠
(𝑘𝑘))

2
+∑(𝑛𝑛 − 𝑠𝑠 − 1)(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2
+ 𝑛𝑛

𝑛𝑛−2

𝑠𝑠=0

𝑛𝑛−2

𝑠𝑠=0
(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2
 

= √∑𝑛𝑛(𝔽𝔽𝑠𝑠
(𝑘𝑘))

2
+ 𝑛𝑛(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2

𝑛𝑛−2

𝑠𝑠=0
= √𝑛𝑛√∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−2

𝑠𝑠=0
                   

จากบทตั้ง 2.3 จะได้  

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖𝐸𝐸 ≥ √𝑛𝑛 (
1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)) = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

และจากอสมการ (1) จะได้  
                                                        ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≥

1
√𝑛𝑛 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                                              (2) 

ให้ 𝐴𝐴 และ 𝐵𝐵 เป็นเมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 โดยที่ 

𝐴𝐴 =

(

 
 
 1 1 1
1 1 1    

⋯ 1 1
⋯ 1 𝑟𝑟

⋮ ⋮ ⋮
1 1 𝑟𝑟
1 𝑟𝑟 𝑟𝑟

    
⋱ ⋮ ⋮
⋯ 𝑟𝑟 𝑟𝑟
⋯ 𝑟𝑟 𝑟𝑟 )

 
 

   และ   𝐵𝐵 =

(

  
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)    

⋯ 𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝔽𝔽0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘) 𝔽𝔽1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

  
 
 

 

ดังนั้น 𝐴𝐴 ∘ 𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) และจะได้ 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
= √∑|𝑎𝑎𝑛𝑛𝑛𝑛|

2
𝑛𝑛

𝑗𝑗=1
= √1 + (𝑛𝑛 − 1)|𝑟𝑟|2 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛

√∑|𝑏𝑏𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑖𝑖=1
= √∑|𝑏𝑏𝑖𝑖1|2

𝑛𝑛

𝑖𝑖=1
= √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
 

จากบทตั้ง 2.7 และบทตั้ง 2.3 จะได้ 

            ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≤ √1 + (𝑛𝑛 − 1)|𝑟𝑟|
2√∑ (𝔽𝔽𝑠𝑠

(𝑘𝑘))
2𝑛𝑛−1

𝑠𝑠=0 ≤ √1+ (𝑛𝑛 − 1)|𝑟𝑟|2 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)     (3) 

จากอสมการ (2) และ (3) จะได้ 
1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1) ≤ ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖

2
≤ √1 + (𝑛𝑛 − 1)|𝑟𝑟|2 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

 (ii) สำหรับกรณี |𝑟𝑟| < 1 จะได ้

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖𝐸𝐸 ≥ √∑(𝑠𝑠 + 1)|𝑟𝑟|2(𝔽𝔽𝑠𝑠
(𝑘𝑘))

2
+∑(𝑛𝑛 − 𝑠𝑠 − 1)|𝑟𝑟|2(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2
+ 𝑛𝑛

𝑛𝑛−2

𝑠𝑠=0
|𝑟𝑟|2

𝑛𝑛−2

𝑠𝑠=0
(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2
 

ดัังนั้้�น  และจะได้้
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จากบทตั้้�ง 2.7 และบทตั้้�ง 2.3 จะได้้

                 (3)

จากอสมการ (2) และ (3) จะได้้

	 (ii) สำหรัับกรณีี  จะได้้

จากบทตั้้�ง 2.3 จะได้้

และจากอสมการ (1) จะได้้

 		   

                                                   		                              (4)

	 กำหนดให้้  และ  เป็็นเมทริิกซ์์ขนาด  โดยที่่�

=∑𝑛𝑛|𝑟𝑟|2(𝔽𝔽𝑠𝑠(𝑘𝑘))
2
+ 𝑛𝑛|𝑟𝑟|2(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2

𝑛𝑛−2

𝑠𝑠=0
= |𝑟𝑟|√𝑛𝑛√∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
           

จากบทตั้ง 2.3 จะได ้

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖𝐸𝐸 ≥ |𝑟𝑟|√𝑛𝑛 (
1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)) = |𝑟𝑟|𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

และจากอสมการ (1) จะได ้
                                                        ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≥

|𝑟𝑟|
√𝑛𝑛 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                           (4) 

กำหนดให้ 𝐴𝐴 และ 𝐵𝐵 เป็นเมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 โดยที่ 

𝐴𝐴 =

(

 
 
 1 1 1
1 1 1    

⋯ 1 1
⋯ 1 𝑟𝑟

⋮ ⋮ ⋮
1 1 𝑟𝑟
1 𝑟𝑟 𝑟𝑟

    
⋱ ⋮ ⋮
⋯ 𝑟𝑟 𝑟𝑟
⋯ 𝑟𝑟 𝑟𝑟 )

 
 

   และ   𝐵𝐵 =

(

  
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)    

⋯ 𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝔽𝔽0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘) 𝔽𝔽1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

  
 
 

 

ดังนั้น 𝐴𝐴 ∘ 𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) และจะได้ 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
= √∑|𝑎𝑎1𝑗𝑗|

2
𝑛𝑛

𝑗𝑗=1
= √𝑛𝑛 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛

√∑|𝑏𝑏𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑖𝑖=1
= √∑|𝑏𝑏𝑖𝑖1|2

𝑛𝑛

𝑖𝑖=1
= √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
 

จากบทตั้ง 2.7 และบทตั้ง 2.3 จะได้ 

                                            ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≤ √𝑛𝑛
√∑ (𝔽𝔽𝑠𝑠

(𝑘𝑘))
2𝑛𝑛−1

𝑠𝑠=0 ≤ √𝑛𝑛 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)                   (5) 

จากอสมการ (4) และ (5) จะได้ 
      |𝑟𝑟|

√𝑛𝑛 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1) ≤ ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≤ √𝑛𝑛 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                               ∎ 

ตัวอย่าง 3.2  ตารางแสดงขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัมของเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 
5 5 ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชี  
Table 1 Upper and lower bounds for the spectral norms of 5 × 5 symmetric r-circulant with the 
hyperharmonic Fibonacci numbers 

 Lower bounds ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 Upper bounds 

|𝑟𝑟| ≥ 1 

𝒌𝒌 = 𝟏𝟏 

𝒓𝒓 = 𝟐𝟐 3.7268 10.8164 34.3592 
𝒓𝒓 = 𝟏𝟏 3.7268 8.3333 18.6339 
𝑟𝑟 = 1 + 𝑖𝑖 3.7268 9.1182 25.0000 

𝑘𝑘 = 2 
𝒓𝒓 = 𝟐𝟐 7.9753 21.6523 73.5287 
𝒓𝒓 = 𝟏𝟏 7.9753 17.8333 39.8765 
𝑟𝑟 = 1 + 𝑖𝑖 7.9753 19.0112 53.5000 

|𝑟𝑟| < 1 𝒌𝒌 = 𝟏𝟏 𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 1.8634 7.5492 18.6339 

ดัังนั้้�น  และจะได้้
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จากบทตั้้�ง 2.7 และบทตั้้�ง 2.3 จะได้้

                                                                 (5)

จากอสมการ (4) และ (5) จะได้้

 				     

                                                 

ตัวัอย่่าง 3.2 ตารางแสดงขอบเขตบนและขอบเขตล่า่งของนอร์มสเปกตรััมของเมทริิกซ์อ์าร์์-เซอร์ค์ูแูลนท์์สมมาตรขนาด 

5 x 5 ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์-มอนิิกฟีีโบนัักชีี 

Table 1	 Upper and lower bounds for the spectral norms of 5 x 5 symmetric r-circulant with the  

		  hyperharmonic Fibonacci numbers

=∑𝑛𝑛|𝑟𝑟|2(𝔽𝔽𝑠𝑠(𝑘𝑘))
2
+ 𝑛𝑛|𝑟𝑟|2(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2

𝑛𝑛−2

𝑠𝑠=0
= |𝑟𝑟|√𝑛𝑛√∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
           

จากบทตั้ง 2.3 จะได ้

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖𝐸𝐸 ≥ |𝑟𝑟|√𝑛𝑛 (
1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)) = |𝑟𝑟|𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

และจากอสมการ (1) จะได ้
                                                        ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≥

|𝑟𝑟|
√𝑛𝑛 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                           (4) 

กำหนดให้ 𝐴𝐴 และ 𝐵𝐵 เป็นเมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 โดยที่ 

𝐴𝐴 =

(

 
 
 1 1 1
1 1 1    

⋯ 1 1
⋯ 1 𝑟𝑟

⋮ ⋮ ⋮
1 1 𝑟𝑟
1 𝑟𝑟 𝑟𝑟

    
⋱ ⋮ ⋮
⋯ 𝑟𝑟 𝑟𝑟
⋯ 𝑟𝑟 𝑟𝑟 )

 
 

   และ   𝐵𝐵 =

(

  
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)    

⋯ 𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝔽𝔽0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘) 𝔽𝔽1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

  
 
 

 

ดังนั้น 𝐴𝐴 ∘ 𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) และจะได้ 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
= √∑|𝑎𝑎1𝑗𝑗|

2
𝑛𝑛

𝑗𝑗=1
= √𝑛𝑛 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛

√∑|𝑏𝑏𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑖𝑖=1
= √∑|𝑏𝑏𝑖𝑖1|2

𝑛𝑛

𝑖𝑖=1
= √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
 

จากบทตั้ง 2.7 และบทตั้ง 2.3 จะได้ 

                                            ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≤ √𝑛𝑛
√∑ (𝔽𝔽𝑠𝑠

(𝑘𝑘))
2𝑛𝑛−1

𝑠𝑠=0 ≤ √𝑛𝑛 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)                   (5) 

จากอสมการ (4) และ (5) จะได้ 
      |𝑟𝑟|

√𝑛𝑛 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1) ≤ ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 ≤ √𝑛𝑛 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                               ∎ 

ตัวอย่าง 3.2  ตารางแสดงขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัมของเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 
5 5 ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชี  
Table 1 Upper and lower bounds for the spectral norms of 5 × 5 symmetric r-circulant with the 
hyperharmonic Fibonacci numbers 

 Lower bounds ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖2 Upper bounds 

|𝑟𝑟| ≥ 1 

𝒌𝒌 = 𝟏𝟏 

𝒓𝒓 = 𝟐𝟐 3.7268 10.8164 34.3592 
𝒓𝒓 = 𝟏𝟏 3.7268 8.3333 18.6339 
𝑟𝑟 = 1 + 𝑖𝑖 3.7268 9.1182 25.0000 

𝑘𝑘 = 2 
𝒓𝒓 = 𝟐𝟐 7.9753 21.6523 73.5287 
𝒓𝒓 = 𝟏𝟏 7.9753 17.8333 39.8765 
𝑟𝑟 = 1 + 𝑖𝑖 7.9753 19.0112 53.5000 

|𝑟𝑟| < 1 𝒌𝒌 = 𝟏𝟏 𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 1.8634 7.5492 18.6339 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 0.3727 7.0073 18.6339 
𝑟𝑟 = 0.2𝑖𝑖 1.6667 7.1028 18.6339 

𝑘𝑘 = 2 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 3.9877 16.6240 39.8765 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 0.7975 15.7322 39.8765 
𝑟𝑟 = 0.2𝑖𝑖 3.5667 15.8927 39.8765 

 สำหรับทฤษฎีบท 3.3 เป็นการหา 1-นอร์ม และ ∞-นอร์มของเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรที่มีสมาชิกเป็น
จำนวนไฮเพอรฮ์าร์มอนกิฟีโบนักชี 
ทฤษฎีบท 3.3 ให้ 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝔽𝔽0

(𝑘𝑘), 𝔽𝔽1
(𝑘𝑘), 𝔽𝔽2

(𝑘𝑘),… , 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ) เป็นเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 

𝑛𝑛 × 𝑛𝑛 จะได้ว่า 
(i) ถ้า |𝑟𝑟| ≥ 1 แล้ว 

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟
(𝑘𝑘)‖

∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2
(𝑘𝑘+1) 

(ii) ถ้า |𝑟𝑟| < 1 แล้ว 
‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟

(𝑘𝑘)‖
∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

พิสูจน์ ให้ 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝔽𝔽0
(𝑘𝑘), 𝔽𝔽1

(𝑘𝑘), 𝔽𝔽2
(𝑘𝑘),… , 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) ) เป็นเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 𝑛𝑛 × 𝑛𝑛 นั่น
คือ 

𝑆𝑆𝑆𝑆𝑟𝑟
(𝑘𝑘) =

(

 
 
 
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)

𝔽𝔽2
(𝑘𝑘)   𝔽𝔽3

(𝑘𝑘) 𝔽𝔽4
(𝑘𝑘)
    
⋯ 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) 𝔽𝔽𝑛𝑛−1
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘)

⋯  𝑟𝑟𝑟𝑟0
(𝑘𝑘) 𝑟𝑟𝑟𝑟1

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝑟𝑟𝑟𝑟0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘) 𝑟𝑟𝑟𝑟1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−4

(𝑘𝑘) 𝑟𝑟𝑟𝑟𝑛𝑛−3
(𝑘𝑘)

⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−3
(𝑘𝑘) 𝑟𝑟𝑟𝑟𝑛𝑛−2

(𝑘𝑘) )

 
 
 
 
 

 

 (i) สำหรับกรณี |𝑟𝑟| ≥ 1 จากบทนิยาม 2.4 (5) และนิยามของจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนักชีจะได้วา่ 
                     ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = |𝔽𝔽𝑛𝑛−1

(𝑘𝑘) | + |𝑟𝑟|∑ |𝔽𝔽𝑠𝑠
(𝑘𝑘)|𝑛𝑛−2

𝑠𝑠=0 = 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2

(𝑘𝑘+1)                         (6) 
และจากบทนิยาม 2.4 (6) และนิยามของจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชีจะไดว้่า 
                           ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖

∞
= |𝔽𝔽𝑛𝑛−1

(𝑘𝑘) | + |𝑟𝑟|∑ |𝔽𝔽𝑠𝑠
(𝑘𝑘)|𝑛𝑛−2

𝑠𝑠=0 = 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2

(𝑘𝑘+1)                              (7) 
จากสมการ (6) และ (7) จะได ้

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟
(𝑘𝑘)‖

∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2
(𝑘𝑘+1) 

(ii) สำหรับกรณี |𝑟𝑟| < 1 จากบทนิยาม 2.4 (5) และนิยามของจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชีจะไดว้่า 
                               ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=0 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=1 = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                              (8) 
และจากบทนิยาม 2.4 (6) และนิยามของจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชีจะไดว้่า 
    ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖

∞
= ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=0 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=1 = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                     (9) 
จากสมการ (8) และ (9) จะได ้
     ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟

(𝑘𝑘)‖
∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                               ∎ 

ตัวอย่าง 3.4  ตารางแสดง 1-นอร์มและ ∞-นอร์ม ของเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 5 5 ที่มีสมาชิกเป็น
จำนวนไฮเพอรฮ์าร์มอนกิฟีโบนักชี 

	ส ำหรัับทฤษฎีีบท 3.3 เป็็นการหา 1-นอร์์ม และ ∞-นอร์์มของเมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตรที่่�มีีสมาชิิก

เป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี

ทฤษฎีีบท 3.3 ให้้  เป็็นเมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตร

ขนาด  จะได้้ว่่า

	 (i) ถ้้า  แล้้ว
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	 (ii) ถ้้า  แล้้ว

พิิสููจน์์ ให้้  เป็็นเมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตรขนาด 

 นั่่�นคืือ

𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 0.3727 7.0073 18.6339 
𝑟𝑟 = 0.2𝑖𝑖 1.6667 7.1028 18.6339 

𝑘𝑘 = 2 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 3.9877 16.6240 39.8765 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 0.7975 15.7322 39.8765 
𝑟𝑟 = 0.2𝑖𝑖 3.5667 15.8927 39.8765 

 สำหรับทฤษฎีบท 3.3 เป็นการหา 1-นอร์ม และ ∞-นอร์มของเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรที่มีสมาชิกเป็น
จำนวนไฮเพอรฮ์าร์มอนกิฟีโบนักชี 
ทฤษฎีบท 3.3 ให้ 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝔽𝔽0

(𝑘𝑘), 𝔽𝔽1
(𝑘𝑘), 𝔽𝔽2

(𝑘𝑘),… , 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ) เป็นเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 

𝑛𝑛 × 𝑛𝑛 จะได้ว่า 
(i) ถ้า |𝑟𝑟| ≥ 1 แล้ว 

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟
(𝑘𝑘)‖

∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2
(𝑘𝑘+1) 

(ii) ถ้า |𝑟𝑟| < 1 แล้ว 
‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟

(𝑘𝑘)‖
∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

พิสูจน์ ให้ 𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟(𝔽𝔽0
(𝑘𝑘), 𝔽𝔽1

(𝑘𝑘), 𝔽𝔽2
(𝑘𝑘),… , 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) ) เป็นเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 𝑛𝑛 × 𝑛𝑛 นั่น
คือ 

𝑆𝑆𝑆𝑆𝑟𝑟
(𝑘𝑘) =

(

 
 
 
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)

𝔽𝔽2
(𝑘𝑘)   𝔽𝔽3

(𝑘𝑘) 𝔽𝔽4
(𝑘𝑘)
    
⋯ 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) 𝔽𝔽𝑛𝑛−1
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘)

⋯  𝑟𝑟𝑟𝑟0
(𝑘𝑘) 𝑟𝑟𝑟𝑟1

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝑟𝑟𝑟𝑟0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘) 𝑟𝑟𝑟𝑟1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−4

(𝑘𝑘) 𝑟𝑟𝑟𝑟𝑛𝑛−3
(𝑘𝑘)

⋯ 𝑟𝑟𝑟𝑟𝑛𝑛−3
(𝑘𝑘) 𝑟𝑟𝑟𝑟𝑛𝑛−2

(𝑘𝑘) )

 
 
 
 
 

 

 (i) สำหรับกรณี |𝑟𝑟| ≥ 1 จากบทนิยาม 2.4 (5) และนิยามของจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนักชีจะได้วา่ 
                     ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = |𝔽𝔽𝑛𝑛−1

(𝑘𝑘) | + |𝑟𝑟|∑ |𝔽𝔽𝑠𝑠
(𝑘𝑘)|𝑛𝑛−2

𝑠𝑠=0 = 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2

(𝑘𝑘+1)                         (6) 
และจากบทนิยาม 2.4 (6) และนิยามของจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชีจะไดว้่า 
                           ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖

∞
= |𝔽𝔽𝑛𝑛−1

(𝑘𝑘) | + |𝑟𝑟|∑ |𝔽𝔽𝑠𝑠
(𝑘𝑘)|𝑛𝑛−2

𝑠𝑠=0 = 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2

(𝑘𝑘+1)                              (7) 
จากสมการ (6) และ (7) จะได ้

‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟
(𝑘𝑘)‖

∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) + |𝑟𝑟|𝔽𝔽𝑛𝑛−2
(𝑘𝑘+1) 

(ii) สำหรับกรณี |𝑟𝑟| < 1 จากบทนิยาม 2.4 (5) และนิยามของจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชีจะไดว้่า 
                               ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=0 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=1 = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                              (8) 
และจากบทนิยาม 2.4 (6) และนิยามของจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชีจะไดว้่า 
    ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖

∞
= ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=0 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=1 = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                     (9) 
จากสมการ (8) และ (9) จะได ้
     ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟

(𝑘𝑘)‖
∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                               ∎ 

ตัวอย่าง 3.4  ตารางแสดง 1-นอร์มและ ∞-นอร์ม ของเมทริกซ์อาร์-เซอร์คูแลนท์สมมาตรขนาด 5 5 ที่มีสมาชิกเป็น
จำนวนไฮเพอรฮ์าร์มอนกิฟีโบนักชี 

	 (i) สำหรัับกรณีี  จากบทนิิยาม 2.4 (5) และนิิยามของจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีีจะได้้ว่่า

                           
	

	                (6)

และจากบทนิิยาม 2.4 (6) และนิิยามของจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีีจะได้้ว่่า

                                           (7)

จากสมการ (6) และ (7) จะได้้

	 (ii) สำหรัับกรณีี  จากบทนิิยาม 2.4 (5) และนิิยามของจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีีจะได้้ว่่า

                                                           (8)

และจากบทนิิยาม 2.4 (6) และนิิยามของจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีีจะได้้ว่่า

                                    	                 (9)

จากสมการ (8) และ (9) จะได้้

 		

		   	  

ตััวอย่่าง 3.4 ตารางแสดง 1-นอร์์มและ ∞-นอร์์ม ของเมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตรขนาด 5 x 5 ที่่�มีีสมาชิิกเป็็น 

จำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี
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Table 2	 1-norm and ∞-norm of 5 x 5 symmetric r-circulant with the hyperharmonic Fibonacci 

numbers

	ส ำหรับทฤษฎีีบท 3.5 เป็็นการหาขอบเขตบนและขอบเขตล่่างของนอร์มสเปกตรััมของเมทริิกซ์์เซอร์คููแลนท์์

เชิิงเรขาคณิิตสมมาตรเมื่่�อ  ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี

ทฤษฎีีบท 3.5 ให้้  เป็็นเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิต

สมมาตรขนาด  จะได้้ว่่า

พิิสููจน์์ ให้้  เป็็นเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิตสมมาตร

ขนาด  นั่่�นคืือ

Table 2 1-norm and ∞-norm of 5 × 5 symmetric r-circulant with the hyperharmonic Fibonacci numbers 
 ‖𝑆𝑆𝑆𝑆𝑟𝑟(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟

(𝑘𝑘)‖∞ 

|𝑟𝑟| ≥ 1 

𝒌𝒌 = 𝟏𝟏 
𝒓𝒓 = 𝟐𝟐 13.8333 
𝒓𝒓 = 𝟏𝟏 8.3333 
𝑟𝑟 = 1 + 𝑖𝑖 10.6115 

𝑘𝑘 = 2 
𝒓𝒓 = 𝟐𝟐 27.3333 
𝒓𝒓 = 𝟏𝟏 17.8333 
𝑟𝑟 = 1 + 𝑖𝑖 21.7684 

|𝑟𝑟| < 1 

𝒌𝒌 = 𝟏𝟏 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 8.3333 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 8.3333 
𝑟𝑟 = 0.2𝑖𝑖 8.3333 

𝑘𝑘 = 2 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 17.8333 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 17.8333 
𝑟𝑟 = 0.2𝑖𝑖 17.8333 

สำหรับทฤษฎีบท 3.5 เป็นการหาขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัมของเมทริกซ์เซอร์คูแลนท์เชิง
เรขาคณิตสมมาตรเม่ือ |𝑟𝑟| ≥ 1 ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชี 
ทฤษฎีบท 3.5 ให้ 𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟∗(𝔽𝔽0
(𝑘𝑘), 𝔽𝔽1

(𝑘𝑘), 𝔽𝔽2
(𝑘𝑘), … , 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) ) เป็นเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร
ขนาด 𝑛𝑛 × 𝑛𝑛 จะได้ว่า 

1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ≤ ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖
2
≤ {

√1 − |𝑟𝑟|
2𝑛𝑛

1 − |𝑟𝑟|2 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1),    |𝑟𝑟| > 1,

√𝑛𝑛 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1),                   |𝑟𝑟| = 1

 

พิสูจน์ ให้ 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟∗(𝔽𝔽0

(𝑘𝑘), 𝔽𝔽1
(𝑘𝑘), 𝔽𝔽2

(𝑘𝑘), … , 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ) เป็นเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตรขนาด 

𝑛𝑛 × 𝑛𝑛 นั่นคอื 

𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) =

(

 
 
 
 
  
 𝔽𝔽0
(𝑘𝑘)      𝔽𝔽1

(𝑘𝑘)      𝔽𝔽2
(𝑘𝑘)      

 𝔽𝔽1
(𝑘𝑘)      𝔽𝔽2

(𝑘𝑘)      𝔽𝔽3
(𝑘𝑘)      

 𝔽𝔽2
(𝑘𝑘)      𝔽𝔽3

(𝑘𝑘)      𝔽𝔽4
(𝑘𝑘)     

  
⋯    𝔽𝔽𝑛𝑛−2

(𝑘𝑘)      𝔽𝔽𝑛𝑛−1
(𝑘𝑘)    

⋯    𝔽𝔽𝑛𝑛−1
(𝑘𝑘)       𝑟𝑟𝑟𝑟0

(𝑘𝑘)     
⋯     𝑟𝑟𝑟𝑟0

(𝑘𝑘)       𝑟𝑟2𝔽𝔽1
(𝑘𝑘)      

⋮       ⋮       ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)     𝑟𝑟𝑟𝑟0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘)     𝑟𝑟2𝔽𝔽1
(𝑘𝑘)
    
    ⋱  ⋮     ⋮   
  ⋯ 𝑟𝑟𝑛𝑛−3𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

  ⋯ 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝑟𝑟𝑛𝑛−1𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

 
 
 
 
 

 

จากบทนิยาม 2.4 (1) จะได้กำลังสองของนอร์มแบบยุคลิดของ 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) คือ 

‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖

𝐸𝐸

2
= ∑(𝑠𝑠 + 1)(𝔽𝔽𝑠𝑠(𝑘𝑘))

2
+∑(𝑛𝑛 − 𝑠𝑠 − 1)|𝑟𝑟𝑠𝑠+1|2(𝔽𝔽𝑠𝑠(𝑘𝑘))

2
𝑛𝑛−2

𝑠𝑠=0

𝑛𝑛−1

𝑠𝑠=0
 

                                           = ∑(𝑠𝑠 + 1)(𝔽𝔽𝑠𝑠(𝑘𝑘))
2
+∑(𝑛𝑛 − 𝑠𝑠 − 1)|𝑟𝑟𝑠𝑠+1|2(𝔽𝔽𝑠𝑠(𝑘𝑘))

2
+ 𝑛𝑛

𝑛𝑛−2

𝑠𝑠=0

𝑛𝑛−2

𝑠𝑠=0
(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2
 

สำหรับ  |𝑟𝑟| > 1 จะได้ 
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จากบทนิิยาม 2.4 (1) จะได้้กำลัังสองของนอร์์มแบบยุุคลิิดของ  คืือ

สำหรัับ  จะได้้

จากบทตั้้�ง 2.3 จะได้้

และจากอสมการ (1) จะได้้ 

 

                                                                                                   (10)

	 กำหนดให้้   และ  เป็็นเมทริิกซ์์ขนาด  โดยที่่�

‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖

𝐸𝐸
≥ √∑(𝑠𝑠 + 1)(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2
+∑(𝑛𝑛 − 𝑠𝑠 − 1)(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2
+ 𝑛𝑛

𝑛𝑛−2

𝑠𝑠=0

𝑛𝑛−2

𝑠𝑠=0
(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2

 

= √∑𝑛𝑛(𝔽𝔽𝑠𝑠
(𝑘𝑘))

2
+ 𝑛𝑛

𝑛𝑛−2

𝑠𝑠=0
(𝔽𝔽𝑛𝑛−1

(𝑘𝑘) )
2
= √𝑛𝑛√∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
    

จากบทตั้ง 2.3 จะได ้

‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖

𝐸𝐸
≥ √𝑛𝑛 (

1
√𝑛𝑛
𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)) = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

และจากอสมการ (1) จะได้  
                                                        ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖
2
≥ 1
√𝑛𝑛 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                                             (10) 

กำหนดให้ 𝐴𝐴 และ 𝐵𝐵 เป็นเมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 โดยที่ 

𝐴𝐴 =

(

 
 
 1 1 1 
1 1 1      

⋯  1       1     
⋯  1       𝑟𝑟     

⋮  ⋮  ⋮
1 1 𝑟𝑟
1 𝑟𝑟 𝑟𝑟2

    
⋱ ⋮  ⋮
⋯ 𝑟𝑟𝑛𝑛−3 𝑟𝑟𝑛𝑛−2
⋯ 𝑟𝑟𝑛𝑛−2 𝑟𝑟𝑛𝑛−1 )

 
 

  และ 𝐵𝐵 =

(

  
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)    

⋯ 𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝔽𝔽0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘) 𝔽𝔽1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

  
 
 

 

ดังนั้น 𝐴𝐴 ∘ 𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)  

 สำหรับกรณี |𝑟𝑟| > 1 จะได ้

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
= √∑|𝑎𝑎𝑛𝑛𝑛𝑛|

2
𝑛𝑛

𝑗𝑗=1
= √1 + |𝑟𝑟|2 + |𝑟𝑟2|2 +⋯+ |𝑟𝑟2|𝑛𝑛−1 

จากสูตรผลบวกของอนกุรมเรขาคณิตที่เป็นอนุกรมจำกัด จะได้ว่า 

𝑟𝑟1(𝐴𝐴) = √
1 − |𝑟𝑟|2𝑛𝑛
1 − |𝑟𝑟|2  

และ 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛

√∑|𝑏𝑏𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑖𝑖=1
= √∑|𝑏𝑏𝑖𝑖1|2

𝑛𝑛

𝑖𝑖=1
= √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
 

จากบทตั้ง 2.7 และบทตั้ง 2.3 จะได้ 

                 ‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖

2
≤ √1−|𝑟𝑟|

2𝑛𝑛

1−|𝑟𝑟|2
√∑ (𝔽𝔽𝑠𝑠

(𝑘𝑘))
2𝑛𝑛−1

𝑠𝑠=0 ≤ √1−|𝑟𝑟|
2𝑛𝑛

1−|𝑟𝑟|2  𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)                (11) 

(ii) สำหรับกรณี |𝑟𝑟| = 1 จะได้ 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
= √∑|𝑎𝑎1𝑗𝑗|

2
𝑛𝑛

𝑗𝑗=1
= √𝑛𝑛 

ดัังนั้้�น 

	ส ำหรัับกรณีี   จะได้้
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จากสููตรผลบวกของอนุุกรมเรขาคณิิตที่่�เป็็นอนุุกรมจำกััด จะได้้ว่่า

และ

จากบทตั้้�ง 2.7 และบทตั้้�ง 2.3 จะได้้

 

 

                        	               (11)

	 (ii) สำหรัับกรณีี   จะได้้

C

จากบทตั้้�ง 2.7 และบทตั้้�ง 2.3 จะได้้

                                                               (12)

จากอสมการ (11) และ (12) จะได้้

และจากอสมการ (10) จะได้้
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ตััวอย่่าง 3.6 ตารางแสดงขอบเขตบนและขอบเขตล่่างของนอร์์มสเปกตรััมของเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิต

สมมาตรขนาด 5 x 5 และ ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี

Table 3	 Upper and lower bounds for the spectral norms of 5 x 5 symmetric geometric circulant  

		  matrices and  with the hyperharmonic Fibonacci numbers

	ส ำหรับัทฤษฎีบีท 3.7 เป็น็การหาขอบเขตบนของนอร์ม์สเปกตรัมัของเมทริกิซ์์เซอร์คู์ูแลนท์เ์ชิงิเรขาคณิติสมมาตร

เมื่่�อ  ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี 

ทฤษฎีีบท 3.7 ให้้  เป็็นเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิต

สมมาตรขนาด  จะได้้ว่่า สำหรัับ  

พิิสููจน์์ ให้้  เป็็นเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิตสมมาตร

ขนาด  นั่่�นคืือ

𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) =

(

 
 
 
 
  
 𝔽𝔽0
(𝑘𝑘)      𝔽𝔽1

(𝑘𝑘)      𝔽𝔽2
(𝑘𝑘)      

 𝔽𝔽1
(𝑘𝑘)      𝔽𝔽2

(𝑘𝑘)      𝔽𝔽3
(𝑘𝑘)      

 𝔽𝔽2
(𝑘𝑘)      𝔽𝔽3

(𝑘𝑘)      𝔽𝔽4
(𝑘𝑘)     

  
⋯    𝔽𝔽𝑛𝑛−2

(𝑘𝑘)      𝔽𝔽𝑛𝑛−1
(𝑘𝑘)    

⋯    𝔽𝔽𝑛𝑛−1
(𝑘𝑘)       𝑟𝑟𝑟𝑟0

(𝑘𝑘)     
⋯     𝑟𝑟𝑟𝑟0

(𝑘𝑘)       𝑟𝑟2𝔽𝔽1
(𝑘𝑘)      

⋮       ⋮       ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)     𝑟𝑟𝑟𝑟0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘)     𝑟𝑟2𝔽𝔽1
(𝑘𝑘)
    
    ⋱  ⋮     ⋮   
  ⋯ 𝑟𝑟𝑛𝑛−3𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

  ⋯ 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝑟𝑟𝑛𝑛−1𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

 
 
 
 
 

 

ให้ 𝐴𝐴 และ 𝐵𝐵 เป็นเมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 โดยที่ 

𝐴𝐴 =

(

 
 
 1 1 1 
1 1 1      

⋯  1       1     
⋯  1       𝑟𝑟     

⋮  ⋮  ⋮
1 1 𝑟𝑟
1 𝑟𝑟 𝑟𝑟2

    
⋱ ⋮  ⋮
⋯ 𝑟𝑟𝑛𝑛−3 𝑟𝑟𝑛𝑛−2
⋯ 𝑟𝑟𝑛𝑛−2 𝑟𝑟𝑛𝑛−1 )

 
 

  และ 𝐵𝐵 =

(

  
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)    

 ⋯ 𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)

 ⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝔽𝔽0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘) 𝔽𝔽1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

  
 
 

 

ดังนั้น 𝐴𝐴 ∘ 𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)  ถ้า |𝑟𝑟| < 1 แล้วจะได้ว่า 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
= √∑|𝑎𝑎1𝑗𝑗|

2
𝑛𝑛

𝑗𝑗=1
= √𝑛𝑛 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛

√∑|𝑏𝑏𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑖𝑖=1
= √∑|𝑏𝑏𝑖𝑖1|2

𝑛𝑛

𝑖𝑖=1
= √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
 

จากบทตั้ง 2.7 และบทตั้ง 2.3 จะได้ 

                                       ‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖

2
≤ √𝑛𝑛√∑ (𝔽𝔽𝑠𝑠

(𝑘𝑘))
2𝑛𝑛−1

𝑠𝑠=0 ≤ √𝑛𝑛 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)                                          ∎                                                                                 

ตัวอย่าง 3.8  ตารางแสดงขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัมของเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร
ขนาด 5 5 และ|𝑟𝑟| < 1ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชี 
Table 4 Upper bound for the spectral norms of 5 × 5  symmetric geometric circulant matrices and |𝑟𝑟| < 1 
with the hyperharmonic Fibonacci numbers 

 ‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖2 Upper Bound 

𝒌𝒌 = 𝟏𝟏 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 7.2070 18.6339 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 7.0753 18.6339 
𝑟𝑟 = 0.2𝑖𝑖 7.0586 18.6339 

𝒌𝒌 = 𝟐𝟐 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 16.0422 39.8765 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 15.8495 39.8765 
𝑟𝑟 = 0.2𝑖𝑖 15.8295 39.8765 

 สำหรับทฤษฎีบท 3.9 เป็นการหา 1-นอร์ม และ ∞-นอร์ม ของเมทริกซ์อาร์-เซอร์คูแลนท์เชิงเรขาคณิตสมมาตรเม่ือ 
|𝑟𝑟| < 1 ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชี 

ทฤษฎีบท 3.9 ให้ 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟∗(𝔽𝔽0

(𝑘𝑘), 𝔽𝔽1
(𝑘𝑘), 𝔽𝔽2

(𝑘𝑘), … , 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ) เป็นเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร

ขนาด 𝑛𝑛 × 𝑛𝑛 จะได้ว่า สำหรับ |𝑟𝑟| < 1 
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	 ให้้  และ  เป็็นเมทริิกซ์์ขนาด  โดยที่่�

𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) =

(

 
 
 
 
  
 𝔽𝔽0
(𝑘𝑘)      𝔽𝔽1

(𝑘𝑘)      𝔽𝔽2
(𝑘𝑘)      

 𝔽𝔽1
(𝑘𝑘)      𝔽𝔽2

(𝑘𝑘)      𝔽𝔽3
(𝑘𝑘)      

 𝔽𝔽2
(𝑘𝑘)      𝔽𝔽3

(𝑘𝑘)      𝔽𝔽4
(𝑘𝑘)     

  
⋯    𝔽𝔽𝑛𝑛−2

(𝑘𝑘)      𝔽𝔽𝑛𝑛−1
(𝑘𝑘)    

⋯    𝔽𝔽𝑛𝑛−1
(𝑘𝑘)       𝑟𝑟𝑟𝑟0

(𝑘𝑘)     
⋯     𝑟𝑟𝑟𝑟0

(𝑘𝑘)       𝑟𝑟2𝔽𝔽1
(𝑘𝑘)      

⋮       ⋮       ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)     𝑟𝑟𝑟𝑟0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘)     𝑟𝑟2𝔽𝔽1
(𝑘𝑘)
    
    ⋱  ⋮     ⋮   
  ⋯ 𝑟𝑟𝑛𝑛−3𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

  ⋯ 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝑟𝑟𝑛𝑛−1𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

 
 
 
 
 

 

ให้ 𝐴𝐴 และ 𝐵𝐵 เป็นเมทริกซ์ขนาด 𝑛𝑛 × 𝑛𝑛 โดยที่ 

𝐴𝐴 =

(

 
 
 1 1 1 
1 1 1      

⋯  1       1     
⋯  1       𝑟𝑟     

⋮  ⋮  ⋮
1 1 𝑟𝑟
1 𝑟𝑟 𝑟𝑟2

    
⋱ ⋮  ⋮
⋯ 𝑟𝑟𝑛𝑛−3 𝑟𝑟𝑛𝑛−2
⋯ 𝑟𝑟𝑛𝑛−2 𝑟𝑟𝑛𝑛−1 )

 
 

  และ 𝐵𝐵 =

(

  
 
  
𝔽𝔽0
(𝑘𝑘) 𝔽𝔽1

(𝑘𝑘) 𝔽𝔽2
(𝑘𝑘)

𝔽𝔽1
(𝑘𝑘) 𝔽𝔽2

(𝑘𝑘) 𝔽𝔽3
(𝑘𝑘)    

 ⋯ 𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)

 ⋯ 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘)

  ⋮    ⋮   ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘) 𝔽𝔽0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝔽𝔽0

(𝑘𝑘) 𝔽𝔽1
(𝑘𝑘)
    
⋱ ⋮     ⋮   
⋯ 𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

⋯ 𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

  
 
 

 

ดังนั้น 𝐴𝐴 ∘ 𝐵𝐵 = 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)  ถ้า |𝑟𝑟| < 1 แล้วจะได้ว่า 

𝑟𝑟1(𝐴𝐴) = max1≤𝑖𝑖≤𝑛𝑛 √∑|𝑎𝑎𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑗𝑗=1
= √∑|𝑎𝑎1𝑗𝑗|

2
𝑛𝑛

𝑗𝑗=1
= √𝑛𝑛 

𝑐𝑐1(𝐵𝐵) = max
1≤𝑗𝑗≤𝑛𝑛

√∑|𝑏𝑏𝑖𝑖𝑖𝑖|
2

𝑛𝑛

𝑖𝑖=1
= √∑|𝑏𝑏𝑖𝑖1|2

𝑛𝑛

𝑖𝑖=1
= √∑(𝔽𝔽𝑠𝑠

(𝑘𝑘))
2

𝑛𝑛−1

𝑠𝑠=0
 

จากบทตั้ง 2.7 และบทตั้ง 2.3 จะได้ 

                                       ‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖

2
≤ √𝑛𝑛√∑ (𝔽𝔽𝑠𝑠

(𝑘𝑘))
2𝑛𝑛−1

𝑠𝑠=0 ≤ √𝑛𝑛 𝔽𝔽𝑛𝑛−1
(𝑘𝑘+1)                                          ∎                                                                                 

ตัวอย่าง 3.8  ตารางแสดงขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัมของเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร
ขนาด 5 5 และ|𝑟𝑟| < 1ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชี 
Table 4 Upper bound for the spectral norms of 5 × 5  symmetric geometric circulant matrices and |𝑟𝑟| < 1 
with the hyperharmonic Fibonacci numbers 

 ‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖2 Upper Bound 

𝒌𝒌 = 𝟏𝟏 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 7.2070 18.6339 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 7.0753 18.6339 
𝑟𝑟 = 0.2𝑖𝑖 7.0586 18.6339 

𝒌𝒌 = 𝟐𝟐 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 16.0422 39.8765 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 15.8495 39.8765 
𝑟𝑟 = 0.2𝑖𝑖 15.8295 39.8765 

 สำหรับทฤษฎีบท 3.9 เป็นการหา 1-นอร์ม และ ∞-นอร์ม ของเมทริกซ์อาร์-เซอร์คูแลนท์เชิงเรขาคณิตสมมาตรเม่ือ 
|𝑟𝑟| < 1 ที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชี 

ทฤษฎีบท 3.9 ให้ 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟∗(𝔽𝔽0

(𝑘𝑘), 𝔽𝔽1
(𝑘𝑘), 𝔽𝔽2

(𝑘𝑘), … , 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ) เป็นเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตร

ขนาด 𝑛𝑛 × 𝑛𝑛 จะได้ว่า สำหรับ |𝑟𝑟| < 1 

	ดั ังนั้้�น  ถ้้า  แล้้วจะได้้ว่่า

จากบทตั้้�ง 2.7 และบทตั้้�ง 2.3 จะได้้

 

ตััวอย่่าง 3.8 ตารางแสดงขอบเขตบนและขอบเขตล่่างของนอร์มสเปกตรััมของเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิต

สมมาตรขนาด 5 x 5 และ  ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี

Table 4 Upper bound for the spectral norms of 5 x 5 symmetric geometric circulant matrices and 

 with the hyperharmonic Fibonacci numbers
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	ส ำหรับัทฤษฎีบีท 3.9 เป็น็การหา 1-นอร์ม์ และ ∞-นอร์ม์ ของเมทริกิซ์อ์าร์-์เซอร์ค์ูแูลนท์เ์ชิงิเรขาคณิติสมมาตร

เมื่่�อ  ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี

ทฤษฎีีบท 3.9 ให้้  เป็็นเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิต

สมมาตรขนาด  จะได้้ว่่า สำหรัับ 

พิิสููจน์์ ให้้  เป็็นเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิตสมมาตร

ขนาด  นั่่�นคืือ

‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖

1
= ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖
∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1) 

พิสูจน์ ให้ 𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟∗(𝔽𝔽0

(𝑘𝑘), 𝔽𝔽1
(𝑘𝑘), 𝔽𝔽2

(𝑘𝑘),… , 𝔽𝔽𝑛𝑛−1
(𝑘𝑘) ) เป็นเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตรขนาด 

𝑛𝑛 × 𝑛𝑛 นั่นคอื 

𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘) =

(

 
 
 
 
  
 𝔽𝔽0
(𝑘𝑘)      𝔽𝔽1

(𝑘𝑘)      𝔽𝔽2
(𝑘𝑘)      

 𝔽𝔽1
(𝑘𝑘)      𝔽𝔽2

(𝑘𝑘)      𝔽𝔽3
(𝑘𝑘)      

 𝔽𝔽2
(𝑘𝑘)      𝔽𝔽3

(𝑘𝑘)      𝔽𝔽4
(𝑘𝑘)     

  
⋯    𝔽𝔽𝑛𝑛−2

(𝑘𝑘)      𝔽𝔽𝑛𝑛−1
(𝑘𝑘)    

⋯    𝔽𝔽𝑛𝑛−1
(𝑘𝑘)       𝑟𝑟𝑟𝑟0

(𝑘𝑘)     
⋯     𝑟𝑟𝑟𝑟0

(𝑘𝑘)       𝑟𝑟2𝔽𝔽1
(𝑘𝑘)      

⋮       ⋮       ⋮
𝔽𝔽𝑛𝑛−2
(𝑘𝑘) 𝔽𝔽𝑛𝑛−1

(𝑘𝑘)     𝑟𝑟𝑟𝑟0
(𝑘𝑘)

𝔽𝔽𝑛𝑛−1
(𝑘𝑘) 𝑟𝑟𝑟𝑟0

(𝑘𝑘)     𝑟𝑟2𝔽𝔽1
(𝑘𝑘)
    
    ⋱  ⋮     ⋮   
  ⋯ 𝑟𝑟𝑛𝑛−3𝔽𝔽𝑛𝑛−4

(𝑘𝑘) 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘)

  ⋯ 𝑟𝑟𝑛𝑛−2𝔽𝔽𝑛𝑛−3
(𝑘𝑘) 𝑟𝑟𝑛𝑛−1𝔽𝔽𝑛𝑛−2

(𝑘𝑘) )

 
 
 
 
 

 

ถ้า |𝑟𝑟| < 1 แล้วจากบทนิยาม 2.4 (5) จะได้ว่า 
                               ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖
1
= ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=0 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=1 = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                            (13) 
และจากบทนิยาม 2.4 (6) จะได ้
    ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖
∞
= ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=0 = ∑ |𝔽𝔽𝑠𝑠

(𝑘𝑘)|𝑛𝑛−1
𝑠𝑠=1 = 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                   (14) 
จากสมการ (13) และ (14) จะได ้
     ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖
1
= ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖
∞
= 𝔽𝔽𝑛𝑛−1

(𝑘𝑘+1)                                               ∎ 

ตัวอย่าง 3.10  ตารางแสดง 1-นอร์ม และ ∞-นอร์ม ของเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตรขนาด 5 5 และ|𝑟𝑟| <
1 ที่มีสมาชิกเป็นจำนวนไฮเพอรฮ์าร์มอนกิฟีโบนักชี 
Table 5 1-norm and ∞-norm of 5 × 5  symmetric geometric circulant matrices and |𝑟𝑟| < 1 with the 
hyperharmonic Fibonacci numbers 

 ‖𝑆𝑆𝑆𝑆𝑟𝑟∗
(𝑘𝑘)‖1 = ‖𝑆𝑆𝑆𝑆𝑟𝑟∗

(𝑘𝑘)‖∞ 

𝒌𝒌 = 𝟏𝟏 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 8.3333 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 8.3333 
𝑟𝑟 = 0.2𝑖𝑖 8.3333 

𝒌𝒌 = 𝟐𝟐 
𝒓𝒓 = 𝟎𝟎. 𝟓𝟓 17.8333 
𝒓𝒓 = −𝟎𝟎. 𝟏𝟏 17.8333 
𝑟𝑟 = 0.2𝑖𝑖 17.8333 

4. สรุปผลการวิจัย 
งานวิจัยนี้มีวัตถุประสงค์เพื่อหาขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัม 1-นอร์ม และ ∞-นอร์มของเมทริกซ์

อาร์-เซอร์คูแลนท์สมมาตร และเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตรที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชี 
ผลของการวิจัยทำให้ได้ขอบเขตบนและขอบเขตล่างของนอร์มสเปกตรัม 1-นอร์ม และ ∞-นอร์มของเมทริกซ์อาร์-เซอร์คูแลนท์
สมมาตรที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนิกฟีโบนกัชี ดังทฤษฏีบท 3.1 และ 3.3 ตามลำดับ และผู้วิจัยได้ขอบเขตบนและ
ขอบเขตล่างของนอร์มสเปกตรัมในกรณี |𝑟𝑟| ≥ 1 ขอบเขตบนของนอร์มสเปกตรัมในกรณี |𝑟𝑟| < 1 และ 1-นอร์ม และ ∞-
นอร์มในกรณี |𝑟𝑟| < 1 ของเมทริกซ์เซอร์คูแลนท์เชิงเรขาคณิตสมมาตรที่มีสมาชิกเป็นจำนวนไฮเพอร์ฮาร์มอนกิฟีโบนักชี ดัง
ทฤษฏีบท 3.5, 3.7 และ 3.9 ตามลำดับ 

 

ถ้้า  แล้้วจากบทนิิยาม 2.4 (5) จะได้้ว่่า

                                                         (13)

และจากบทนิิยาม 2.4 (6) จะได้้

                                                         (14)

จากสมการ (13) และ (14) จะได้้
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ตััวอย่่าง 3.10 ตารางแสดง 1-นอร์์ม และ ∞-นอร์์ม ของเมทริิกซ์์เซอร์์คููแลนท์์เชิิงเรขาคณิิตสมมาตรขนาด 5 x 5 และ 

 ที่่�มีีสมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี

Table 5	 1-norm and ∞-norm of 5 x 5 symmetric geometric circulant matrices and with the  

		  hyperharmonic Fibonacci numbers

4. สรุุปผลการวิิจััย
	 งานวิจิัยันี้้�มีวีัตัถุปุระสงค์เ์พื่่�อหาขอบเขตบนและ

ขอบเขตล่า่งของนอร์ม์สเปกตรัมั 1-นอร์ม์ และ ∞-นอร์ม์

ของเมทริกิซ์อ์าร์-์เซอร์คูแูลนท์ส์มมาตร และเมทริกิซ์เ์ซอร์์

คูแูลนท์เ์ชิงิเรขาคณิติสมมาตรที่่�มีสีมาชิกิเป็น็จำนวนไฮเพอร์์

ฮาร์์มอนิิกฟีีโบนัักชีี ผลของการวิิจััยทำให้้ได้้ขอบเขต 

บนและขอบเขตล่่างของนอร์์มสเปกตรััม 1-นอร์์ม และ 

∞-นอร์์มของเมทริิกซ์์อาร์์-เซอร์์คููแลนท์์สมมาตรที่่�มีี

สมาชิิกเป็็นจำนวนไฮเพอร์์ฮาร์์มอนิิกฟีีโบนัักชีี ดัังทฤษฎี ี

บท 3.1 และ 3.3 ตามลำดัับ และผู้้�วิิจััยได้้ขอบเขตบน

และขอบเขตล่่างของนอร์์มสเปกตรััมในกรณีี 

ขอบเขตบนของนอร์มสเปกตรััมในกรณีี  และ 

1-นอร์์ม และ ∞-นอร์์มในกรณีี  ของเมทริิกซ์์

เซอร์คููแลนท์์เชิิงเรขาคณิตสมมาตรที่่� มีีสมาชิิกเป็็น 

จำนวนไฮเพอร์ฮาร์์มอนิกฟีโีบนักชีี ดังัทฤษฎีบีท 3.5, 3.7 

และ 3.9 ตามลำดัับ
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