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Abstract

Traditional methods of identifying poisonous mushrooms can be both inaccurate and time-
consuming. The most common approach involves visually inspecting the mushroom’s physical
characteristics, which can be labor-intensive and challenging. This study investigated the use of
machine learning techniques to classify mushrooms into two categories: edible and poisonous. A
public dataset of 8,124 gilled mushrooms from 23 species within the Agaricus and Leiota genera was
used to train five machine learning models: logistic regression, support vector machines (SVMs),
decision trees, random forests, and XGBoost. Feature selection and extraction technique were applied
to identify the most important attributes for classifying mushroom species. The results indicated that
the decision tree model, coupled with recursive feature elimination (RFE), achieved the best
performance when using 60% of the data and focusing on three features: odor, gill size, and spore
print color. This model produced an F1 score of 99.32%. Based on these finding, a prototype web

application was developed for potential future use.

Keywords: Mushroom classification; Machine learning; Decision tree; Recursive feature

elimination; Poisonous mushroom
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Experimental design
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Table 1 Mushroom dataset

Variables (Abbreviation)

Possibilities

cap_color (CCO)

brown, buff, cinnamon, gray, green, pink, purple, red, white, yellow

cap_surface (CSU)

fibrous, grooves, scaly, smooth

cap_shape (CSH)

bell, conical, convex, flat, knobbed, sunken

gill_color (GCO)

black, brown, buff, chocolate, gray, green, orange, pink, purple,
red, white, yellow

gill_attachment (GAT)

attached, descending, free, notched

gill_spacing (GSP)

close, crowded, distant

gill_size (GSI)

broad, narrow

stalk shape (SSH)

enlarging, tapering

stalk_root (SRO)

bulbous, club, cup, equal, rhizomorphs, rooted, missing

stalk _color above ring (SCA)

brown, buff, cinnamon, gray, orange, pink, red, white, yellow

stalk _color below ring (SCB)

stalk surface above ring (SSA)

fibrous, scaly, silky, smooth

stalk surface below ring (SSB)

il_type (VTY)

partial, universal

veil
veil color (VCO)

brown, orange, white, yellow

ring_number (RNU)

none, one, two

ring_type (RTY)

cobwebby, evanescent, flaring, large, none, pendant, sheathing,
zone

bruise (BRU)

bruises, no

odor (ODO)

almond, anise, creosote, fishy, foul, musty, none, pungent, spicy

spore_print_color (SPC)

black, brown, buff, chocolate, green, orange, purple, white,
yellow

population (POP)

abundant, clustered, numerous, scattered, several, solitary

habitat (HAB)

grasses, leaves, meadows, paths, urban, waste, woods

class_ep (CEP)

edible, poisonous
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Figure 2 Performance metric (F1 score) of model using 20 features

Table 2 Parameters of each model

Models Training sizes Parameters
Logistic Regression  All solver = ‘newton-cg’, penalty = ‘none’, C = 22.456734693877554
SVM All kernel= ‘poly’, gamma = 5.0, degree=3.6666666666666665,
C=73.6868420526315
Decision tree 50% min_samples_split = 15, max_leaf nodes = 46, max_features =

‘sgrt’, max_depth = 30

60%, 70%

min_samples_split = 9, max_leaf nodes = 35, max_features

‘log2’, max_depth = 21

Random Forest 50%

n_estimators= 300, min_samples_split = 71, max_leaf nodes

= 57, max_features = ‘log2’, max_depth =52

60%, 70%

n_estimators= 300, min_samples_split = 52, max_leaf nodes

= 43, max_features = ‘log2’, max_depth =85

XGBoost 50%, 60%

n_estimators=300, subsample =

0.5, min_child_weight= 1,

max_depth= 3, learning rate= 0.22749999999999998,
colsample_bytree=1

70%

n_estimators= 300, subsample =

1, min_child weight= 10,

max_depth= 4, learning rate= 0.3, colsample_bytree= 1
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No. of Models Training sizes Feature names (as Abbreviation)
features
Logistic regression  All
VCO, RNU, SPC

50%, 60%

XGBoost

5 70% SSH, VCO, RNU
Random Forest All
ODO, GSI, SPC
. 50%, 60%

Decision tree
70% ODO, SPC, POP

Logistic regression  All BRU, GSP, VCO, RNU, SPC
50%, 60% ODO, GSI, VCO, RNU,SPC

XGBoost
70% GSP, SSH, VCO, RNU, SPC

5 Random Forest All ODO, GSI, RTY, SPC, POP

50% ODO, SPC, SCB, POP, HAB

Decision tree 60% CCO, ODO, GSI, SPC, POP
70% ODO, GSP, GSI, SCA, HAB
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Table 3 Feature names of feature selection (RFE) (Continue)

No. of Models Training sizes Feature names (as Abbreviation)
features
Logistic regression  All BRU, GSP, SSA, VCO, RTY, RNU, SPC
50% ODO, GSP, GSI, VCO, RNU, SPC, POP
XGBoost 60% ODO, GSP, GSI, SSA, VCO, RNU, SPC
; 70% ODO, GSP, GSI, SSH, VCO, RNU, SPC
Random Forest All BRU, ODO, GSP, GSI, RTY, SPC, POP
50% BRU, ODO, GSI, SSA, SSB, RTY, SPC
Decision tree 60% BRU, ODO, GSI, SSB, SCB, SPC, POP
70% ODO, GSP, GSI, SCA, RTY, SPC, POP
Logistic regression  All CSU, BRU, GSP, GSI, SSA, VCO, RTY, RNU, SPC
CBoost 50%, 60% ODO, GSP, POP, SSA, VCO, SSB, GSI, RNU, SPC
70% CSU, ODO, GSI, GSP, SSH, VCO, RNU, SPC, POP
50%, 60% BRU, ODO, GSP, GSI, RTY, SSA, SSB, SPC, POP
9 Random Forest
70% BRU, ODO, GSP, GSI, RTY, SSB, HAB, SPC, POP
50% BRU, GSP, GSI, SSH, HAB, SSB, SCB, SPC, POP
Decision tree 60% ODO, SSH, HAB, SSB, SCA, RTY, RNU, SPC, POP
70% BRU, ODO, GSP, GSI, SSH, HAB, RTY, SPC, SCA

Table 4 Feature names of feature selection (Chi-square)

No. of Models Training sizes Feature names (as Abbreviation)
features
3 All All GSI, BRU, GSP
5 All All GSI, BRU, GSP, SPC, RTY
7 All All GSI, BRU, GSP, SPC, RTY, GCO, CSU
9 All All GSI, BRU, GSP, SPC, RTY, GCO, CSU, POP, SCA
114
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Figure 4 Performance metric of model: (A) Feature selection (RFE), (B) Feature selection (chi-square) and

(C) Feature extraction (PCA)
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