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Abstract

The objective of this study was to evaluate the effectiveness of two forecasting models: the
hybrid Whale Optimization Algorithm with Holt-Winters (WOA-HW) and hybrid Whale Optimization
Algorithm with Decomposition (WOA-D), in forecasting weekly PM2.5 concentrations in 8 provinces
in Northern Thailand. These models were compared to classical decomposition (Classic-D) and grid
search Holt-Winters (Classic-HW) models using a training dataset of 130 weeks. The results show that
WOA-HW and WOA-D outperformed the classical models, with WOA-D exhibiting significantly lower
RMSE than Classic-D. Although WOA-HW had RMSE values comparable to Classic-HW, it required
less time to find the optimal parameters.

For long-term forecasts over two years, a test dataset of 105 weeks was used, with RMSE,
MAE, and MAPE serving as evaluation metrics. The results indicated that the optimal model varied
for each province: WOA-HW was best for Lampang and Chiang Rai, WOA-D for Mae Hong Son and
Phayao, Box-Jenkins for Nan and Phrae, Classic-HW for Lamphun, and Classic-D for Chiang Mai.
The two-year forecast for all provinces revealed a distinct seasonal pattern in PM2.5 concentrations,

with levels exceeding health-impact thresholds from December to April.

Keywords: PM2.5; Whale Optimization Algorithm; Decomposition; Holt-Winters; Box-Jenkins; LSTM
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Range Initialize X, = (x/,x7,...,x"), X"

While (t< 7

max

Fori=1to N

For j =1tom
p =rand[0,1]
Update a,r,4,C,D,D',b,l,X,,,
If p>0.5 then

Elseif p<0.5and|4| <1

Elseif p<0.5and|4|>1

Endif
End for
End for

Update X if there is a better solution

t=t+1
End while

Return X°

Input: the number of whales: N, the number of parameters: m, maximum iterations: T

limit: MaxTime , the fitness value fails to improve after a specified:

or time < MaxTime or the fitness value fails to improve after a specified 7,,,,,.)

Check if any search agent goes beyond the search space and amend it

#Exploitation Phase: Update x/ the position of the current search agent by the Eq. (2)

#Encircling Prey: Update x/ the position of the current search agent by the Eq. (1)

#Exploration Phase: Update x/ the position of the current search agent by the Eq. (3)

Calculate finess(X,) using HW/Decomposition

, time

max

T,,.prove » the bound of search area:

Figure 1 Pseudo-code of WOA
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Table 1 Training Dataset RMSE by Province
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CMI LPG CRI MSN NAN LPN PRE PYO
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Classic-D 10.73072  13.84824  17.18191  20.45834 1259933 1243616 14.16146  15.05965
WOA-HW 13.98683  17.19809 21.47516 26.30601  16.40176  15.10299  17.04539  16.72952
Classic-HW 13.97959 1719810 21.47518 26.30559 16.04056 15.10300 17.04403 16.72953

Note: The lowest RMSE value between WOA-D and Classic-D, and between WOA-HW and Classic-HW is bolded
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Table 2 RMSE Metrics for Each Province’s Testing Dataset

CMI LPG CRI MSN NAN LPN PRE PYO
WOA-D 23.1066 24.0376 29.7050 25.3191 25.8858 22.2615 19.7992 22.5871
WOA-HW 22.4704 20.5950 28.0672 27.7104 31.7598 16.2253 16.4673 23.3082
Classic-D 21.8446 24.9215 31.0733 30.6131 25.1791 21.7060 21.5414 24.9190
Classic-HW 22.0666 20.5951 28.0641 27.7424 23.8451 16.2212 16.4660 23.3035
Box-Jenkins 24.0092 24.2997 353172 28.8855 22.5499 17.4173 16.8644 23.5297
LSTM 24.6521 28.6177 43.9556 26.7570 23.9249 18.3271 18.7947 26.2028
Note: The lowest value for each province is bolded
Table 3 MAE Metrics for Each Province’s Testing Dataset

CMI LPG CRI MSN NAN LPN PRE PYO
WOA-D 14.4982 16.9714 17.7679 13.6246 19.0599 14.7432 13.9808 12.5994
WOA-HW 12.6768 13.1074 15.4342 13.4418 23.1809 10.6340 10.6631 12.6384
Classic-D 14.3271 16.8168 18.6476 15.1466 18.3419 13.8492 14.8273 15.1587
Classic-HW 12.1324 13.1065 15.4371 13.5613 15.2835 10.6305 10.6631 12.6358
Box-Jenkins 12.8686 15.1068 21.8719 13.4957 13.5623 11.4518 10.4930 13.1559
LSTM 12.7400 19.8306 24.5086 12.6958 14.8416 11.7020 13.6729 13.8013
Note: The lowest value for each province is bolded
Table 4 MAPE Metrics for Each Province’s Testing Dataset

CMI LPG CRI MSN NAN LPN PRE PYO
WOA-D 61.4543 62.3862 69.0285 57.5336 61.7411 55.7308 56.4822 43.9754
WOA-HW 49.6047 45.8028 63.1640 44.7999 72.4274 51.6015 40.4787 42.7960
Classic-D 40.7040 44.0149 74.3722 57.6796 60.6864 52.9528 59.4778 56.3023
Classic-HW 45.7530 45.7961 63.2067 46.5667 44.5442 51.5791 40.5051 42.7963
Box-Jenkins 43.2071 46.6772 97.2940 39.8519 39.3229 52.2111 39.5831 42.4107
LSTM 43.3844 72.3414 86.3939 56.0160 43.2336 62.8611 59.3373 40.7605

Note: The lowest value for each province is bolded

3.4 nswgnsalatent 2 U
AsnensalAtaaduty PM2.5 e 8
Famdamudnuuiivssansamanniigaluiade
3.3 lanansiduA193uazAweInsaleas Figure 5
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Figure 6 Two-Year Ahead Forecasted Values for All Provinces
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Month Year _ Weekly _Chiang Mai_Lampang _ChiangRai Mae HongSon __Nan __ Lamphun __ Phrae ___ Phayao
July-23 27 7 14 4 6 15 5 11 12
July-23 28 6 15 3 10 16 7 1 12
July-23 29 9 1 3 7 16 5 1 1
July-23 30 1 17 2 2 19 5 22 12
July-23 31 9 1 1 5 18 4 12 5

August-23 32 10 12 1 1 19 3 12 10

August-23 33 11 14 1 4 17 5 13 10

August-23 34 10 13 1 5 18 4 13 1

August-23 35 15 12 1 9 2 6 17 2

September-23 36 10 15 4 9 19 5 1 13
September-23 37 8 u 1 21 19 1 10 9
September-23 38 12 16 1 5 17 4 12 13
September-23 39 10 23 8 9 19 13 13 14

October-23 a0 9 26 10 6 20 20 1 10

October-23 a1 9 25 9 4 18 2 19 16

October-23 a2 14 25 6 15 23 21 36 20

October-23 a3 14 24 8 7 22 19 36 17

October-23 a4 18 25 7 11 27 17 36 17

November-23 45 20 30 7 15 31 18 40 16
November-23 46 18 32 12 18 27 2 23 2
November-23 47 19 31 1 9 26 23 22 2
November-23 48 2 30 1 14 36 25 29 29
December-23 49 30 35 23 34 6 27 29 30
December-23 50 27 a3 25 15 2 38 as 31
December-23 51 33 a 19 13 8 28 a9 2
December-23 52 25 56 19 8 37 39 a3 29

January-24 1 35 a3 3 12 25 35 38 33

January-24 2 a 50 19 12 52 39 51 35

January-24 3 37 58 15 16 57 33 62 47

January-24 a a2 63 20 2 68 36 75 s5

January-24 5 39 62 2 25 73 40 94 55

February-24 6 28 a9 2 37 75 36 78 a

February-24 7 a1 30 20 63 74 29 94 59

February-24 8 51 53 35 65 79 51 116 56

February-24 9 56 79 a1 108 98 56 163 68

March-24 10 89 68 50 141 108 54 123 89
March-24 u 7 7 o1 97 87 74 74 58
March-24 12 55 71 78 129 86 59 103 72
March-24 13 93 70 91 145 98 61 120 88
April-24 1 49 100 139 90 107 87 146 70
April-24 15 6 53 50 65 88 59 111 60
April-24 16 37 50 51 a1 64 50 100 a3
April-24 17 14 56 50 32 56 55 51 28
April-24 18 18 32 50 16 50 30 64 34
May-24 19 19 38 54 13 35 37 30 20
May-24 20 20 34 a7 8 37 31 as 33
May-24 2 14 34 8 8 35 28 a2 2
May-24 2 17 23 2 6 27 19 29 16
June-24 23 1 22 19 8 2 16 22 14
June-24 24 9 14 9 5 19 7 19 15
June-24 25 13 14 5 3 19 6 14 11
June-24 26 8 16 7 1 15 7 16 8
July-24 27 7 1 4 5 17 5 16 13
July-24 28 6 15 3 9 20 7 16 13
July-24 29 8 1 3 6 19 5 17 12
July-24 30 10 17 2 1 23 5 31 13
July-24 31 8 1 1 a 2 4 17 6

August-24 32 10 12 1 0 23 3 17 1

August-24 33 1 1 1 3 20 5 19 1

August-24 34 10 13 1 4 22 4 19 12

August-24 35 14 12 1 8 25 6 25 23

September-24 36 9 15 a 8 23 5 2 14
September-24 37 7 1 1 20 2 1 15 10
September-24 38 12 16 1 4 2 4 17 13
September-24 39 10 23 8 8 23 13 19 14
September-24 40 8 26 10 5 25 20 21 1

October-24 41 9 25 9 3 22 24 27 17

October-24 a2 14 25 6 14 27 21 52 20

October-24 a3 14 2 8 6 2 19 52 18

October-24 aa 17 25 7 10 32 17 52 18

November-24 45 19 30 7 14 37 18 59 17
November-24 46 18 32 12 17 33 22 33 23
November-24 47 19 31 1 8 31 23 31 23
November-24 48 21 30 1 13 a 25 a2 29
December-24 49 29 35 23 33 55 27 a2 31
December-24 50 26 43 25 1 51 38 69 32
December-24 51 32 a 19 12 58 28 71 43
December-24 52 25 56 19 7 44 39 63 29
December-24/ o, 35 a3 13 1 54 35 54 3

January-25

January-25 2 a1 50 ) 1 63 39 73 35

January-25 3 37 58 15 15 68 33 90 8

January-25 4 2 63 20 21 82 36 109 56

January-25 5 39 62 21 24 88 40 136 56

February-25 6 27 a9 2 36 90 36 13 a5

February-25 7 a1 30 20 62 89 29 136 60

February-25 8 51 53 35 64 9% 51 167 57

February-25 9 55 79 a1 103 118 s6 236 68

March-25 10 89 68 50 140 130 54 178 89
March-25 1 70 77 91 9% 105 74 107 59
March-25 12 54 71 78 128 104 59 148 72
March-25 13 %2 70 o1 144 118 61 173 89
March-25 1 8 100 139 89 129 87 211 71
April-25 15 a5 53 50 64 106 59 161 61
April-25 16 36 50 51 40 78 50 144 43
April-25 17 14 56 50 31 68 55 73 29
April-25 18 18 32 50 15 60 30 92 35
May-25 19 18 38 54 2 2 37 as 20
May-25 20 20 34 a7 7 5 31 69 33
May-25 2 13 35 8 7 2 28 61 22
May-25 22 16 23 24 5 33 19 42 17
June-25 23 10 2 19 7 26 16 31 15
June-25 2 8 1 9 4 23 7 27 15
June-25 25 12 1 5 2 23 6 2 12
June-25 26 7 16 7 1 18 7 23 9

Note: The yellow category,
which has health impacts,
ranges from 37.5 to 75.09
micrograms per cubic meter.
The red category, indicating
severe health impacts, starts at
75.1 micrograms per cubic meter

and above.
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Table 5 Summary of the best-fit model of
objective function RMSE for each

province in the train dataset phase

Train Dataset Phase

WOA-D CMI, LPG, CRI, MSN, NAN, LPN, PRE, PYO
Classic-D

WOA-HW LPG, CRI, LPN, PYO
Classic-HW CMI, MSN, NAN, PRE

99397 6 wandliifiuliannsnszyis
nswensaiarauuuleilinadnsifige
ogaudn lesananuiumuesioyasynIIna
danaranukiug lun1snensalatmn ey
lud mnepdeyaiineusuiisuuuundendaiu
yadeyaneaeu lumadidluyndoyaiineusufid
wunldudiazlinadniialuyadeyanaasudieg
wufy egnalsfiniy dsdrdyRodoansentnin
Anuifuruesoyaoynsunatuiatulfiaue
Yyadayatnausuuazynveyananaaueiaiinly
uAnEnefu wamsURoRTuuE Ao Tun1sweinsal
dramtharsadrsduuunatefuuuLiiowan
wWisuiuiumunaeinsinaula

Table 6 Summary of the most suitable model
for each province in the test dataset
phase

Test Dataset Phase
RMSE MAE MAPE

WOA-D MSN, PYO PYO

Classic-D i - CMI, LPG

WOA-HW LPG CRI CRI

Classic-HW ~ CRI, LPN, PRE  CMI, LPG, LPN LPN

Box-Jenkins NAN NAN, PRE  MSN, NAN, PRE
LST™ - MSN PYO
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