Effects of Inorganic Media Enriched with Sodium Acetate on the Growth Performance and Nutrient Content in The Microalga Chlorella vulgaris

Main Article Content

A N M Azizul Islam Khan
Md. Ahsan Bin Habib
Md. Idris Miah

Abstract

Inorganic nutrients are used in aquaculture to increase natural productivity. This study aimed to apply sodium acetate as a growth enhancer in inorganic media to culture the microalga Chlorella vulgaris in laboratory conditions. Sodium acetate-enriched Bold basal medium (BBMAC) and Urea-Phosphate-Potassium media (NPKAC1 and NPKAC2) were used as experimental treatments, while Bold basal medium (BBM) was used as a control. During eight days of culture of C. vulgaris, maximum cell growth of 262.35 ×105 cells·mL-1 and chlorophyll a concentration of 12.16 mg·L-1 were found in BBMAC, followed by those grown in BBM, NPKAC1 and NPKAC2. Specific growth rates (SGR, µ) and chlorophyll a of C. vulgaris grown in BBMAC were significantly (p<0.01) higher than microalgae cultured in other media. Crude protein of C. vulgaris cultured in BBM as control medium was significantly (p<0.01) higher than that of algae grown in other media. Crude lipid content of C. vulgaris grown in BBMAC was significantly (p<0.01) higher than that of algae cultured in other media. However, there was little difference in content of crude lipids among algae grown in BBM and other inorganic media containing sodium acetate. The study indicates that media enriched with sodium acetate can enhance the cell growth and nutrient values in cultivation of C. vulgaris.

Article Details

How to Cite
Khan, A. N. M. A. I. ., Habib, M. A. B. ., & Miah, M. I. . (2020). Effects of Inorganic Media Enriched with Sodium Acetate on the Growth Performance and Nutrient Content in The Microalga Chlorella vulgaris. Journal of Fisheries and Environment, 44(3), 32–44. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/171564
Section
Articles

References

Alam, M.M.M., M.I. Miah and M.A.B. Habib. 2003. A study on the feeding responses of Cyclops sp. on various concentrations of Chlorella sp. Pakistan Journal of Scientific and Industrial Research 46: 258–267.

Alkhamis, Y. and J.G. Qin. 2016. Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures. Journal of Applied Phycology 28: 35–42.

Ashraf, M., M. Javaid, T. Rashid, M. Ayub, A. Zafar, S. Ali and M. Naeem. 2011. Replacement of expensive pure nutritive media with low cost commercial fertilizer for mass culture of freshwater algae, Chlorella vulgaris. International Journal of Agriculture and Biology 13: 484–490.

Brito, D., A. Castro, M. Guevara, E. Gómez, A. Ramos-Villarroel and N.M. Aron. 2013. Biomass and pigments production of the mixed culture of microalgae (Hyaloraphidium contortum and Chlorella vulgaris) by cultivation in media based on commercial fertilizer. Food Technology 37: 85–97.

Callegari, J.P. 1989. Feu vert pour les microalgues. Biofuture 76: 25–40.

Combres, C., G. Laliberte, J.S. Reyssac and J. de la Noüe. 1994. Effect of acetate on growth and ammonium uptake in the microalgae Scenedesmus obliquus. Physiologia Plantarum 91: 729–734.

Chu, W.L., S.M. Phang and G. Swee-Hock. 1995. Influence of carbon source on growth, biochemical composition and pigmentation of Ankistrodesmus convolutus. Journal of Applied Phycology 7: 59–64.

Clesceri, L.S., A.E. Greenberg and R.R. Trussel. 1989. Standard Methods for The Examination of Water and Wastewater, 17th ed. American Public Health Association, American Water Works Association and Water Works Pollution Control Federation, Washington DC, USA. 1110 pp.

de Pauw, N., J. Morales and G. Persoone. 1984. Mass culture of microalgae in aquaculture systems: progress and constraints. Hydrobiology 116: 121–134.

El-Nabris, K.J.A. 2012. Development of cheap and simple culture medium for the microalgae Nannochloropsis sp. based on agricultural grade fertilizers available in the local market of Gaza Strip (Palestine). Journal of Al Azhar University-Gaza14: 61–76.

Estévez-Landazábal, L.L., A.F. Barajas-Solano, C. Barajas-Ferreira and V. Kafarov. 2013. Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. CT&F - Ciencia, Tecnología y Futuro 5: 113–126.

Geldenhuys, D.J., D.J. Walmsley and D.J. Tofrien. 1988. Quality of algal material produced on a fertilizer-tap water medium in outdoor plastic enclosed systems. Aquaculture 68: 157–164.

Gladue, R.M. and J.E. Maxey. 1994. Microalgal feeds for aquaculture. Journal of Applied Phycology 6: 131–141.

Habib, M.A.B. 1998. Culture of selected microalgae in rubber and palm oil mill effluents and their use in the production of enriched Rotifer. Ph D thesis, Universiti Putra Malaysia, Malaysia. 532 pp.

Habib, M.A.B., F.M. Yusoff, S.M. Phang and S. Mohamed. 2003. Growth and nutritional values of Moina micrura fed on Chlorella vulgaris grown in digested palm oil mill effluent. Asian Fisheries Science 16: 107–119.

Habib, M.A.B., M. Parvin, T.C. Huntington and M.R. Hasan. 2008. A Review on Culture, Production and Use of Spirulina as Food for Humans and Feed for Domestic Animals and Fish. Food and Agriculture Organization (FAO) of United Nations, Rome, Italy. 33 pp.

Hoff, H. and T.W. Snell. 1989. Plankton Culture Manual, 2nd ed. Florida Aqua Farms, Florida, USA. 126 pp.

Hongjin, Q. and W. Guangce. 2009. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese Journal of Oceanology and Limnology 27: 762–768.

Horwitz, W. 1984. Official Methods of Analysis of The Association of The Official Analytical Chemists, 14th ed. Association of the Official Analytical Chemists (AOAC) Washington, D.C., USA. 1018 pp.

Hu, Q., M. Sommefield, E. Jarvis, M. Ghirardi, M. Posewitz, M. Scibert and A. Darzins. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal 54: 621–639.

Huang, X., Z. Huang, W. Wen and J. Yan. 2013. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculate and Pavlova viridis). Journal of Applied Phycology 25: 129–137.

Juario, J.V. and V. Storch. 1984. Biological evaluation of phytoplankton (Chlorella sp., Tetraselmis sp. and Isochrysis galbana) as food for milkfish (Chanos chanos) fry. Aquaculture 40: 193–198.

Kawaguchi, K. 1980. Algal biomass production and use. In: Microalgae Production System in Asia (eds. G. Shelef and C.J. Coeder), pp. 25-33. Elsevier, Amsterdam, Netherlands.

Khan, A.N.M.A.I., M.A.B. Habib, M.R. Islam, M.S. Hossain and M.I. Miah. 2006. Culture of the microalga Chlorella vulgaris on different proportions of sugar mill effluents. Pakistan Journal of Scientific and Industrial Research 49: 196–202.

Khan, A.N.M.A.I., M.A.B. Habib, M.S. Hossain and M.I. Miah. 2018. Culture of the Microalga Chlorella vulgaris in pressmud media as sugarmill waste. International Journal of Fisheries and Aquatic Research 3: 41–45.

Laliberte, G. and J. de la Noüe. 1993. Auto-, hetero- and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. Journal of Phycology 29: 612–620.

Li, T., Y. Zheng, L. Yu and S. Chen. 2014. Mixotrophic cultivation of a Chlorella sorokiniana

strain for enhanced biomass and lipid production. Biomass Bioenergy 66(1): 204–213. DOI: 10.1016/j.biombioe.2014.04.010.

Liu, Y., L. Li and R. Jia. 2011. The optimum resources ratio (N:P) for growth of Microcystis aeruginosa with abundant nutrients. Procedia Environmental Sciences 10: 2134-2140.

Lourenço, S.O., U.M.L. Marquez, J. Mancini-Filho, E. Garbarinoand and E. Aiber. 1997. Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture 148: 153–168.

Markou, G., I. Angelidaki and D. Georgakakis. 2012. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology 96: 631–645.

Mooij, P.R., G.R. Stouten, J. Tamis, M.C.M. van Loosdrecht and R. Kleerebezem. 2013. Survival of the fattest. Energy and Environmental Science 6: 3404–3406.

Mooij, P.R., L.D. de Jough, M.C.M. van Loosdrecht and R. Kleerebezem. 2016. Influence of silicate on enrichment of highly productive microalgae from a mixed culture. Journal of Applied Phycology 28: 1453–1457.

Muys, M., Y. Sui, B. Schwaiger, C. Lesueur, D. Vandenheuvel, P. Vermeir and S.E. Vlaeminck. 2019. High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology 275: 247–257.

Oscar, M.P., E. Vicente, J. Lorenzo, S. Arturo, V. Gonzalo and V. Manuel. 2017. Sugar cane molasses as culture media component for microbial transglutaminase production. Indian Journal of Biotechnology 16: 419–425.

Rahardini, R.A., S. Helmiati and B. Triyatmo. 2018. Effect of inorganic fertilizer on the growth of fresh water Chlorella sp. IOP Conference Series: Earth and Environmental Science 139: 012005. DOI: 10.1088/1755-1315/139/1/012005.

Sharma, A. K., P.K. Sahoo, S. Singhal and A. Patel. 2016. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech 6: 116. DOI: 10.1007/s13205-016-0434-6.

Silva, H.R., C.E.C. Prete, F. Zambrano and V.H. de Mello. 2016. Combining glucose and sodium acetate improves the growth of Neochloris oleoabundans under mixotrophic conditions. AMB Express 6: 10. DOI: 10.1186/s13568-016-0180-5.

Sipaúba-Tavares, L.H., A.M.D.L. Segali, F.A. Berchielli-Moraisand and B. Scardoeli-Truzzi. 2017. Development of low-cost culture media for Ankistrodesmus gracilis based on inorganic fertilizer and macrophyte. Acta Limnologica Brasiliensia 29: e5. DOI: 10.1590/S 2179-975X3916.

Sipaúba-Tavares, L.H., R.N. Millan, F.D.A. Berchielli and F.M.S. Braga. 2011. Use of alternative media and different types of recipients in a laboratory culture of Ankistrodesmus gracilis (Reinsch) Korshikov (Chlorophyceae). Acta Scientiarum Biological Sciences 33: 247–253. DOI: 10.1590/S 2179-975X3916.

Smith, R.T., K. Bangert, S.J. Wilkinson and D.J. Gilmour. 2015. Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass and Bioenergy 82: 73-86.

Soong, P. 1980. Algal biomass production and use. In: Production and Development of Chlorella and Spirulina in Taiwan (eds. G. Shelef and C.J. Coeder), pp. 97-113. Elsevier, Amsterdam, Netherlands.

Sukenik, A. and Y. Carnneli. 1990. Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. Journal of Phycology 26: 463– 469.

Tadashi, T., K. Mari, H. Tsubasa, K. Naoto, T. Yasuhiro, I. Daisuke, S. Kazunari, M. Masaaki and M. Kazuhiro. 2018. Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnology for Biofuels 11: 176. DOI: 10.1186/s13068-018-1174-0.

Tam, N.F.Y. and Y.S. Wong. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology 57: 45–50.

Tan, C.K. and M.R. Johns. 1991. Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiology 215: 13–19.

Thompson, A.S., J.C. Rhodes and I. Pettman. 1988. Culture Collection of Algae and Protozoa. Natural Environment Research Council. Titas Wilson and Son Ltd., Kendal, UK. 164 pp.

Toyub, M.A., M.I. Miah, M.A.B. Habib and M.M. Rahman. 2008. Growth performance of Scenedesmus obliquus indifferent concentrations of sweetmeat factory waste media. Bangladesh Journal of Animal Science 371: 86–93.

Tsuzuki, M. and S. Miyachi. 1989. The function of carbonic anhydrase in aquatic photosynthesis. Aquatic Botany 34: 85–104.

Ukeles, R. 1971. Nutritional requirements in shellfish culture. In: Artificial Propagation of Commercially Valuable Shellfish (eds. K.S. Price and D.L. Maurer), pp. 43-64. University of Delaware, Delaware, USA.

Ukeles, R. 1976. Cultivation of plants, unicellular plants. In: Marine Ecology III. Part 1. (ed. O. Kinne), pp. 367-466. John Willy and Sons, New York, USA.

Vazhappilly, R. and F. Chen. 1988. Eicosapentanoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. Journal of American Oil Chemistry Society 75: 393–397.

Vonshak, A. and A. Richmond.1988. Mass production of blue green algae Spirulina: an overview. Biomass 15: 233–247.

Vymazal, J. 1995. Algae and Element Cycling in Wetlands. CRC Press, Inc., Boca Raton, Florida, USA. 689 pp.

Watanabe, T.A., C. Kitajima and S. Fukita. 1983. Nutritional value of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115–143.

Whitton, R., A.L. Mevel, M. Pidou, F. Ometto, R. Villa and B. Jefferson. 2016. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research 91: 371-378.

Wijffels, R.H. and M.J. Barbosa. 2010. An outlook on microalgal biofuels. Science 329: 796–799.

Yamaguchi, K. 1997. Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites. A review. Journal of Applied Phycology 8: 487–502.

Zar, J.H. 1984. Biostatistics. Prentice- Hall Inc., New Jersey, USA. 718 pp.