Phytochemical Composition and Antibacterial Activity of Brown Seaweed, Padina australis against Human Pathogenic Bacteria

Main Article Content

Anirut Klimjit
Jantana Praiboon
Surapee Tiengrim
Anong Chirapart
Visanu Thamlikitkul


Seaweeds have become targets for chemical screening in search of new compounds that have potential medical value, including antibacterial activity. The aim of this study was to evaluate the chemical composition and antibacterial activity of the extract and fractions of Padina australis. The chemical compounds in seaweed samples were extracted with methanol, then sequentially partitioned with hexane, dichloromethane, ethyl acetate (EA) and n-butanol. The EA fraction was further separated using silica gel column chromatography to yield eight subfractions (EA-1 to EA-8). The antibacterial activity was tested against seven pathogenic bacteria through the disc diffusion method and its minimum inhibitory concentration was tested using the standard broth dilution method. The highest activity against gram-positive bacteria was observed for the EA-1 subfraction with inhibition zones of 9.37±0.09 mm, 12.25±0.60 mm and 10.30±0.05 mm for Bacillus subtilis ATCC6633, Staphylococcus aureus ATCC25923 and methicillin-resistant S. aureus KL046, respectively. None of the extracts showed activity against gram-negative bacteria. Moreover, the antibacterial activity was positively correlated with the total phenolic content in the extracts against B. subtilis (r = 0.656), S. aureus (r = 0.800) and methicillin-resistant S. aureus (r = 0.880). The highest fucoxanthin content was also observed in the EA-1 subfraction. The active compounds of the EA-1 subfraction were identified using gas chromatography coupled with mass spectroscopy, and the major components were fucosterol, (3β, 24Z)-Stigmasta-5, 24(28)-dien-3-ol and phloroglucinol. Based on these results, the bioactive compounds responsible for the antibacterial activity might be the phenolic compounds fucoxanthin, fucosterol and fucosterol derivative.


Download data is not yet available.

Article Details



1. Abdelhamid, A., M. Jouini, H.B.H. Amor, Z. Mzoughi, M. Dridi, R.B. Said and A. Bouraoui. 2018. Phytochemical analysis and evaluation of the antioxidant, anti-inflammatory, and antinociceptive potential of phlorotannin-rich fractions from three Mediterranean brown seaweeds. Marine Biotechnology 20(1): 60-74.

2. Aknin, M., K. Dogbevi, A. Samb, J.M. Kornprobst, E.M. Gaydou and J. Miralles. 1992. Fatty acid and sterol composition of eight algae from the Senegalese coast. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 102: 841-843.

3. Al Easa, H.S., J. Kornprobst and A.M. Rizk. 1995. Major sterol composition of some algae from Qatar. Phytochemistry 39: 373-374.

4. Alghazeer, R., F. Whida, E. Abduelrhman, F. Gammoudi and M. Naili. 2013. In vitro antibacterial activity of alkaloid extracts from green, red and brown macroalgae from western coast of Libya. African Journal of Biotechnology 12(51): 7086-7091.

5. Bauer, A.W., M.M. Kirby, J.C. Sherris and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45: 493-496.

6. Berber, I., C. Avsar and H. Koyuncu. 2015. Antimicrobial and antioxidant activities of Cystoseira crinite Duby and Ulva intestinalis Linnaeus from the coastal region of Sinop, Turkey. Journal of Coastal Life Medicine 3(6): 441-445.

7. Boonchum, W., Y. Peerapornpisal, D. Kanjapothi, J. Pekkoh, D. Amornlerdpison, C. Pumas, P. Sangpaiboon and P. Vacharapiyasophon. 2011. Antimicrobial and anti-inflammatory properties of various seaweeds from the Gulf of Thailand. International Journal of Agriculture and Biology 13(1): 100-104.

8. Brotosudarmo, T.H.P., Heriyanto, Y. Shioi, Indriatmoko, M.A.S Adhiwibawa, R. Indrawati and L. Limantara. 2018. Composition of the main dominant pigments from potential two edible seaweeds. The Philippine Journal of Science 147(1): 47-55.

9. Brown, E.M., P.J. Allsopp, P.J. Magee, C.I.R. Gill, S. Nitecki, C.R. Strain and E.M. McSorley. 2014. Seaweed and human health. Nutrition Reviews 72(3): 205-216.

10. Caamal-Fuentes, E., R. Moo-Puc, Y. Freile-PelegrÍn and D. Robledo. 2014. Cytotoxic and antiproliferative constituents from Dictyota ciliolata, Padina sanctae-crucis and Turbinaria tricostata. Pharmaceutical Biology 52(10): 1244-1248.

11. Canoy, J.L. and J.G. Bitacura. 2018. Cytotoxicity and antiangiogenic activity of Turbinaria ornata Agardh and Padina australis Hauck ethanolic extracts. Analytical Cellular Pathologly 2018: 3709491. DOI: 10.1155/2018/3709491.

12. Chiao-Wei, C., H. Siew-Ling and W. Ching-Lee. 2011. Antibacterial activity of Sargassum polycystum C. Agardh and Padina australis Hauck (Phaeophyceae). African Journal of Biotechnology 10: 14125-14131.

13. Cho, S., H. Yang, Y.J. Jeon, C.J. Lee, Y.H. Jin, N.I. Baek, D. Kim, S.M. Kang, M. Yoon, H. Yong, M. Shimizu and D. Han. 2012. Phlorotannins of the edible brown seaweed Ecklonia cava Kjellman induce sleep via positive allosteric modulation of gamma-aminobutyric acid type A-benzodiazepine receptor: A novel neurological activity of seaweed polyphenols. Food Chemistry 132: 1133-1142.

14. Choi, J.G., O.H. Kang, O.O. Brice, Y.S. Lee, H.S. Chae, Y.C. Oh, D.H. Sohn, H. Park, H.G. Choi, S.G. Kim, D.W. Shin and D.Y. Kwon. 2010. Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Foodborne Pathogen Disease 7(4): 435-441.

15. Clinical and Laboratory Standard Institute. 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, 9th ed. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne. 87 pp.

16. Cox, S., N. Abu-Ghannam and S. Gupta. 2010. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal 17: 205-220.

17. El-Shafay, S., S.S. Ali and M.M. El-Sheekh. 2016. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egyptian Journal of Aquatic Research 42: 65-72.

18. Eom, S.H., J.H. Park, D.U. Yu, J.I. Choi, J.D. Choi, M.S. Lee and Y.M. Kim. 2011. Antimicrobial activity of brown alga Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Fisheries and Aquatic Science 14: 251-256.

19. Eom, S.H., D.S. Lee, Y.M. Kang, K.T. Son, Y.J. Jeon and Y.M. Kim. 2013a. Application of yeast Candida utilis to ferment Eisenia bicyclis for enhanced antibacterial effect. Applied Biochemistry and Biotechnology 171(3): 569-582.

20. Eom, S.H., K.H. Lim and Y.M. Kim. 2013b. Potential of Candida utilis to ferment Ecklonia cava by-product for enhanced anti-methicillin-resistant Staphylococcus aureus (MRSA) activity. Journal of Applied Phycology 25: 1949-1956.

21. Eom, S.H., Y.M. Kim and S.K. Kim. 2012. Antimicrobial effect of phlorotannins from marine brown algae. Food Chemistry Toxicology 50: 3251-3255.

22. Fonseca-Camarillo, G., J. Furuzawa-Carballeda, J. Granados and J.K. Yamamoto-Furusho. 2014. Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clinical and Experimental Immunology 177: 64-75.

23. Gunji, S., J. Santoso, Y. Yoshie-Stark and T. Suzuki. 2007. Effects of extracts from tropical seaweeds on DPPH radicals and Caco-2, cells treated with hydrogen peroxide. Food Science and Technology Research 13(3): 275-279.

24. Gupta, S. and N. Abu-Ghannam. 2011. Bioactive potential and possible health effects of edible brown seaweeds. Food Science and Technology 22: 315-326.

25. Hsieh, L. and A. Amin. 2016. Antimicrobial stewardship: Hospital strategies to curb antibiotic resistant. In: Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches (eds. K. Kon and M. Rai), pp. 1-18. Elsevier, London.

26. Jaswir, I., D. Noveindri, H.M. Salleh, M. Taher and K. Miyashita. 2011. Isolation of fucoxanthin and fatty acids analysis of Padina australis and cytotoxic effect of fucoxanthin on human lung cancer (H1299) cell lines. African Journal of Biotechnology 10(81): 18855-18862.

27. Jariyasethpong, T., C. Tribuddharat, S. Dejsirilert, A. Kerdsin, P. Tishyadhigama, S. Rahule, P. Sawanpanyalert, P. Yosapol and N. Aswapokee. 2010. MRSA carriage in a tertiary governmental hospital in Thailand: emphasis on the prevalence and molecular epidemiology. European Journal of Clinical Microbiology and Infectious Diseases 29: 977-985.

28. Kamenarska, Z., M.J. Gasic, M. Zlatovic, A. Rasovic, D. Sladic, Z. Kljajic, K. Stefanov, K. Seizova, H. Najdenski, A. Kuumgiev, I. Tsvetkova and S. Popov. 2002. Chemical composition of the brown alga Padina pavonica (L.) Gaill from the Adriatic Sea. Botanica Marina 45: 339-345.

29. Kantachumpoo, A. and A. Chirapart. 2010. Components and antimicrobial activity of polysaccharides extracted from Thai brown seaweeds. Kasetsart Journal Natural Science 44: 220-233.

30. Kaufman, P.B., L.J. Cseke, S. Warber, J.A. Duke and H.L. Brielmann. 1999. Natural Products From Plants. CRC Press, Boca Raton, Florida. 343 pp.

31. Kavita, K., V.K. Singh and B. Jha. 2014. 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological Research 169(4): 301-306.

32. Khanum, R., F. Mazhar and M. Jahangir. 2015. Antioxidant evaluations of polar and non-polar fractions of Cajanus cajan seeds. Journal of Medicinal Plants Research 9(6): 193-198.

33. Kim, S.K. and Q.V. Ta. 2011. Potential beneficial effects of marine algal sterols on human health. In: Advances in Food and Nutrition Research (ed. S.K. Kim), pp. 191-198. Elsevier, San Diego, California.

34. Kim, Y.B., Y.G. Moon and M.S. Heo. 2008. Antioxidant and antimicrobial activities of seaweed, Ecklonia cava. Journal of Biotechnology 136: 589-601.

35. Kitti, T., K. Boonyonying and S. Sitthisak. 2011. Prevalence of methicillin-resistant Staphylococcus aureus among university students in Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health 42(6): 1499-1504.

36. Kumar, S.S., Y. Kumar, M.S.Y. Khan and V. Gupta. 2010. New antifungal steroids from Turbinaria conoides (J. Agardh) Kutzing. Natural Product Research 24(15): 1481-1487.

37. Lee, D.S., M.S. Kang, H.J. Hwang, S.H. Eom, J.Y. Yang, M.S. Lee, W.J. Lee, Y.J. Jeon, J.S. Choi and Y. M. Kim. 2008. Synergistic effect between dieckol from Ecklonia stolonifera and β-Lactamase against methicillin-resistant Staphylococcus aureus. Biotechnology and Bioprocess Engineering 13: 758-764.

38. Lee, J.H., S.H. Eom, E.H. Lee, Y.J. Jung, H.J. Kim, M.R. Jo, K.T. Son, H.J. Lee, J.H. Kim, M.S. Lee and Y.M. Kim. 2014. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 29: 47-55.

39. Lee, M.S., T. Shin, T. Utsuki, J.S. Choi, D.S. Byun and S.R. Kim. 2012. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and hepatoprotective properties in tacrine-treated HepG2 cells. Journal of Agriculture and Food Chemistry 60: 5340-5349.

40. Li, Y., Z.J. Qian, B. Ryu, S.H. Lee, M.M. Kim and S.K. Kim. 2009. Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorganic and Medicinal Chemistry 17: 1963-1973.

41. Li, Y.X., I. Wijerekara, Y. Li and S.K. Kim. 2011. Phlorotannins as bioactive agents from brown algae. Process Biochemistry 46: 2219-2224.

42. Lόpez, A., M. Rico, A. Rivero and M.S. Tangil. 2011. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry 125: 1104-1109.

43. Madkour, F.F., G.A. El-Shoubaky and M.A. Ebada. 2019. Antibacterial activity of some seaweeds from the Red Sea coast of Egypt. Egyptian Journal of Aquatic Biology and Fisheries 23(2): 265-274.

44. Mashjoor, S., M.A., Esmaeili and R. Rafiee. 2016. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology 68: 1717-1726.

45. Maheswari, M.U., A. Reena and C. Sivaraj. 2017. GC-MS analysis, antioxidant and andtibacterial activity of the brown algae, Padina tetrastromatica. International Journal of Pharmaceutical Sciences and Research 8(9): 4014-4020.

46. Matysik, E., A. Wozniak, R. Paduch, R. Rejdak, B. Polak and H. Donica. 2016. The new TLC method for separation and determination of multicomponent mixtures of plant extracts. Journal of Analytical Methods in Chemistry 2016: 1813581. DOI: 10.1155/2016/1813581.

47. Nagayama, K., Y. Iwamura, T. Shibata, I. Hirayama and T. Nakamura. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobial Chemotherapy 50: 889-893.

48. Peng, J., J.P. Yuan, C.F. Wu and J.H. Wang. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs 9: 1806-1828.

49. Phang, S.M., H.Y. Yeong, E.T. Ganzon-Fortes, K. Lewmanomont, A. Prathep, L.N. Hau. G.S. Gerung and K.S. Tan. 2016. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bulletin of Zoology 34: 13-59.

50. Pierpaoli, E., O. Cirioni, A. Barucca, F. Orlando, C. Silvestri, A. Giacometti and M. Provinciali. 2011. Vitamin E supplementation in old mice induces antimicrobial activity and improves the efficacy of daptomycin in an animal model of wounds infected with methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 66(9): 2184-2185.

51. Praiboon, J., S. Palaka, T. Noiraksa and K. Miyashita. 2018. Seasonal variation in nutritional composition and anti-proliferative activity of brown seaweed, Sargassum oligocystum. Journal of Applied Phycology 30: 101-111.

52. Prathep, A., S. Pongparadon, A. Darakrai, B. Wichachucherd and S. Sinutok. 2011. Diversity and distribution of seaweed at Khanom-Mu Ko Thale Tai National Park, Nakhon Si Thammarat Province, Thailand. Songklanakarin Journal of Science and Technology 33(6): 633-640.

53. Rajauria, G. and N. Abu-Ghannum. 2013. Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: A TLC-based approach. International Journal of Analytical Chemistry 2013: 802573. DOI: 10.1155/2013/802573

54. Rattaya, S., S. Benjakuland T. Prodpran. 2015. Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand. International Aquatic Research 7: 1-16.

55. Richter, M.F., B.S. Drown, A. Riley, A. Garcia, T. Shirai, R.L. Svec and P.J. Hergenrother. 2017. Predictive rules for compound accumulation yield a broad-spectrum antibiotic. Nature 18: 299-304.

56. Rodrigues, D., C. Alves, A. Horta, S. Pinteus, J. Silva, G. Culioli, O.P. Thomas and R. Pedrosa. 2015. Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Marine Drugs 13: 713-726.

57. Sathya, R., N. Kanaga, P. Sankar and S. Jeeva. 2017. Antioxidant properties of phlorotannins from brown seaweed Cystoseira trinodis (Forrsskål) C. Agardh. Arabian Journal of Chemistry 10: 2608-2614.

58. Smith, A.J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology 16: 245-262.

59. Suresh, M., P. Iyapparaj and P. Anantharaman. 2016. Antifouling activity of lipidic metabolites derived from Padina tetrastromatica. Applied Biochemistry and Biotechnology 179: 805-818.

60. Thamlikitkul, V., P. Rattanaumpawan, A. Boonyasiri, V. Pumsuwan, T. Judaeng, S., Tiengrim, W. Paveenkittiporn, S. Rojanathien, S. Jaroenpoj and S. Issaracharnvanich. 2015. Thailand antimicrobial resistance containment and prevention proGram. Journal of Global Antimicrobial Resistance 3: 290-294.

61. Thirunavukkarasu, R., P. Pandiyan, K. Subaramaniyan, D. Balaraman, S. Manikkam, B. Sadaiyappan and G.E.G. Jothi. 2014. Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography-mass spectrometry. Journal of Coastal Life Medicine 2(5): 367-375.

62. Widjaja-Adhi Airanthi, M.K., M. Hosokawa and K. Miyashita. 2011. Comparative antioxidant activity of edible Japanese brown seaweeds. Journal of Food Science 76: 104-111.

63. Zailanie, K. 2016. Study of Padina australis using UV-VIS, HPLC and Antibacterial. Journal of Life Science and Biomedicine 6(1): 1-5.