Positive Genetic Correlation between Resistance to Aeromonasis and Streptococcosis in Nile Tilapia Oreochromis niloticus (Linnaeus, 1758)
Main Article Content
Abstract
We estimated genetic parameters for resistance to two bacterial diseases, aeromonasis and streptococcosis, in Nile tilapia, evaluating whether genetic correlation exists between these traits. A total of 43 families were produced using a partial factorial design. At 30 days post-hatch, 120 fish from each family were divided into two groups and were subjected to bath challenge in Aeromonas hydrophila (AH) or Streptoccoccus agalactiae (SA) solutions at median lethal concentration (96 h LC50). Survival was measured as a binary trait (dead/alive) at day 14 post-challenge. Variance components were estimated using two statistical models. Heritability estimates were low and comparable between the threshold and the linear animal models for both traits, being 0.17±0.04 and 0.18±0.05 for AH; and 0.15±0.03 and 0.15±0.04 for SA. For each trait, the accuracy of the linear model in predicting estimated breeding values (EBVs) was slightly higher than that for the threshold model. Spearman rank correlation between models was almost unity ( ), indicating similar rankings of families by these models. Genetic correlations between resistance to AH and SA were moderately positive ( ) for both threshold and linear models. This positive correlation is favorable for the genetic improvement of tilapia fry, as selection for increased resistance in one of the traits would result in a correlated response for the other.
Article Details
References
Argue, B.J., S.M. Arce, J.M. Lotz and S.M. Moss. 2002. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura syndrome virus. Aquaculture 204: 447–460.
Astles, P.A., A.J. Moore and R.F. Preziosi. 2006. A comparison of methods to estimate cross-environment genetic correlations. Journal of Evolutionary Biology 19: 114-122.
Anshary, H., R.A. Kurniawan, S. Sriwulan, R. Ramli and D.V. Baxa. 2014. Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia. SpringerPlus 3: 627. DOI: 10.1186/2193-1801-3-627.
Asencios, Y.O., F.B. Sánchez, H.B. Mandizábal, K.H. Pusari, H.O. Alfonso, A.M. Sayán, M.A. Pereira Figueiredo, W.G. Manrique, M.A. de Andrade Belo and N.S. Chaupe. 2016. First report of Streptococcus agalactiae isolated from Oreochromis niloticus in Piura, Peru: Molecular identification and histopathological lesions. Aquaculture Reports 4: 74-79.
Berg, P. and M. Henryon. 1998. A comparison of mating designs for inference of genetic parameters in fish. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia 1998: 115-118.
Camus, A.C., R.M. Durborow, W.G. Hemstreet, R.L. Thune and J.P. Hawke. 1998. Aeromonas bacterial infections – Motile aeromonad septicemia. https://srac.tamu.edu/categories /view/26. Cited 20 Feb 2020.
Cipriano, R.C. 2001. Aeromonas hydrophila and Motile Aeromonad Septicemias of Fish. United States Department of the Interior, Fish and Wildlife Service, Division of Fishery Research, Washington, D.C., USA. 24 pp.
Evenhuis, J.P., T.D. Leeds, D.P. Marancik, S.E. LaPatra and G.D. Wiens. 2015. Rainbow trout (Oncorhynchus mykiss) resistance to columnaris disease is heritable and favorably correlated with bacterial cold water disease resistance. Journal of Animal Science 95: 1546-1554.
Falconer, D.S. and T.F.C. Mackay. 1997. Introduction to Quantitative Genetics, 4th ed. Longman Group, Ltd., Harlow, UK. 477 pp.
Fjalestad, K.T., T. Gjedrem and B. Gjerde. 1993. Genetic improvement of disease resistance in fish: an overview. Aquaculture 111: 65-74.
Gilmour, A.R., B.J. Gogel, B.R. Cullis and R. Thompson. 2015. ASReml User Guide Release 4.1. VSN International, Ltd., Hemel Hempstead, UK. 375 pp.
Gitterle, T., J. Ødegård, B. Gjerde, M. Rye and R. Salte. 2006. Genetic parameters and accuracy of selection for resistance to white spot syndrome virus (WSSV) in Penaeus (Litopenaeus) vannamei using different statistical models. Aquaculture 251: 210–218.
Gjedrem, T. 2005. Selection and Breeding Programs in Aquaculture. Springer, Dordrecht, Netherlands. 378 pp.
Gjedrem, T. 2015. Disease resistant fish and shellfish are within reach: A review. Journal of Marine Science and Engineering 3: 146–153.
Gjedrem, T. and H.M. Gjøen. 1995. Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis. Aquaculture Research 26: 129-134.
Gjøen, H.M., T. Refstie, O. Ulla and B. Gjerde. 1997. Genetic correlations between survival of Atlantic salmon in challenge and field tests. Aquaculture 158: 277-288.
Goddard, M. 2009. Genomic selection: prediction of accuracy and maximization of long-term response. Genetica 136: 245-257.
Henryon, M., P. Berg, N.J. Olesen, T.E. Kjær, W.J. Slierendrecht, A. Jokumsen and I. Lund. 2005. Selective breeding provides an approach to increase resistance of rainbow trout (Onchorhynchus mykiss) to the diseases, enteric redmouth disease, rainbow trout fry syndrome, and viral haemorrhagic septicaemia. Aquaculture 250: 621-636.
Huang, Y., Z. Yin, S. Weng, J. He and S. Li. 2012. Selective breeding and preliminary commercial performance of Penaeus vannamei for resistance to white spot syndrome virus (WSSV). Aquaculture 364−365: 111–117.
Kaplan, E.L. and P. Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53: 457–481.
Kayansamruaj, P., N. Pirarat, I. Hirono and C. Radkhum. 2014. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up‐regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Veterinary Microbiology 172: 265–271.
Kjøglum, S., M. Henryon, T. Aasmundstad and I. Korsgaard. 2008. Selective breeding can increase resistance of Atlantic salmon to furunculosis, infectious salmon anaemia and infectious pancreatic necrosis. Aquaculture Research 39: 498-505.
Leal, C.A.G., G.A. Queiroz, F.L. Pereira, G.C. Tavares and H.C.P. Figueiredo. 2019. Streptococcus agalactiae sequence type 283 in farmed fish, Brazil. Emerging Infectious Diseases 25: 776-779.
Lindhé, B. and J. Philipsson. 1998. Conventional breeding programmes and genetic resistance to animal diseases. Scientific and Technical Review of the Office International des Epizooties 17: 291–301.
Lynch, M. and B. Walsh. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, USA. 992 pp.
Mrode, R.A., 2014. Linear Models for the Prediction of Animal Breeding Values, 3rd ed. CABI, Boston, MA, USA. 359 pp.
Ødegård, J., I. Olesen, B. Gjerde and G. Klemetsdal. 2006. Evaluation of statistical models for genetic analysis of challenge test data on furunculosis resistance in Atlantic salmon (Salmo salar): Prediction of field survival. Aquaculture 259: 116–123.
Ødegård, J., I. Olesen, B. Gjerde and G. Klemetsdal. 2007. Evaluation of statistical models for genetic analysis of challenge-test data on ISA resistance in Atlantic salmon (Salmo salar): Prediction of progeny survival. Aquaculture 26: 70–76.
Ødegård, J. A. Sommer and A.K. Præbel. 2010. Heritability of resistance to viral nervous necrosis in Atlantic cod (Gadus morhua L.). Aquaculture 300: 59-64.
Rodkhum, C., P. Kayansamruaj and N. Pirarat. 2011. Effect of water temperature on susceptibility to Streptococcus agalactiae serotype Ia infection in Nile tilapia (Oreochromis niloticus). Thai Journal of Veterinary Medicine 41: 309–314.
Sae-Lim, P., B. Gjerde, H.M. Nielsen, H. Mulder and A. Kause. 2015. A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Reviews in Aquaculture 7: 1-25.
Shoemaker, C.A., C.A., Lozano, B.R. LaFrentz, J.C. Garćia, E. Soto, D. Xu, B.H. Beck and M. Rye. 2017. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: Is genetic resistance correlated? Aquaculture 469: 193–198.
Suanyuk, N, F. Kong, D. Ko, G.L. Gilbert and K. Supamattaya. 2008. Occurrence of rare
genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand – relationship to human isolates? Aquaculture 284: 35–40.
Suebsong, W., S. Poompuang, P. Srisapoome, S. Koonawootrittriron, A. Luengnaruemitchai, H. Johansen and M. Rye. 2019. Selection response for Streptococcus agalactiae resistance in Nile tilapia Oreochromis niloticus. Journal of Fish Diseases 42: 1553-1562.
Sukhavachana, S., S. Poompuang, S. Onming and A. Luengnaruemitchai. 2019. Heritability estimates and selection response for resistance to Streptococcus agalactiae in red tilapia Oreochromis spp. Aquaculture 502: 384-390.
Therneau, T.M. and P.M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. Springer, New York, USA. 355 pp.
Wonmongkol, P., S. Sukhavachana, K. Ampolsak, P. Srisapoome, T. Suwanasopee and S. Poompuang. 2018. Genetic parameters for resistance against Flavobacterium columnare in Nile tilapia Oreochromis niloticus (Linnaeus, 1758). Journal of Fish Diseases 41: 321-328.
Yáñez, J.M., R. Bangera, J.P. Lhorente, M. Oyarzún and R. Neira. 2013. Quantitative genetic variation of resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Aquaculture 414−415: 155–159.
Yáñez, J.M., R.D. Houston and S. Newman. 2014. Genetics and genomics of disease resistance in salmonid species. Frontiers in Genetics 5: 415. DOI: 10.3389/fgene.2014.00415.
Ye, X., J. Li, M. Lu, G. Deng, X. Jiang, Y. Tian, Y. Quan and Q. Jian. 2011. Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fisheries Science 77: 623-632.
Zamri-Saad, M., M.N.A. Amal, A. Siti-Zahrah and A.R. Zulkafli. 2014. Control and prevention of streptococcosis in cultured tilapia in Malaysia: a review. Pertanika Journal of Tropical Agricultural Science 37: 389-410.