Antimicrobial, Antioxidant, and Antifouling Activity from Extracts of Aboveground and Belowground Parts of Seagrasses Cymodocea rotundata and Cymodocea serrulata
Main Article Content
Abstract
Seagrasses have been known to produce metabolites with significant bioactivities, which vary by plant part and age, season, location, and solvent used for extraction. This study is the first to specify the most effective parts of seagrasses and solvents for their extraction. Two seagrass species were used in the present study: Cymodocea rotundata (CR) and Cymodocea serrulata (CS). Extracts from aboveground (leaves) and belowground parts (rhizomes and roots) using three different solvents showed significantly different antimicrobial, antioxidant and antifouling activity (p<0.05). The maximum antimicrobial activities were found for the root-dichloromethane extracts of both CR and CS which showed broad antimicrobial activity against seven and five microorganisms, respectively, with minimum inhibition concentration (MIC) of 312.5 mg·mL-1 against Staphylococcus aureus, Candida albicans and Bacillus subtilis. The root-70% acetone extract of CS and leaf-70% acetone extract of CR possessed the most effective DPPH and ABTS radical scavenging activity, with IC50 values of 62.1 and 43.96 for CS and 125.8 and 60.60 mg·mL-1 for CR, respectively. The most promising extracts as antifoulants (by their inhibition of byssus production) were leaf-70% acetone extracts of CR and CS, with EC50 of 6.18 and 6.12 mg·mL-1, respectively. Phenol content was correlated with DPPH radical scavenging and inhibition of byssus production (r = 0.468 [p<0.05] and 0.577 [p<0.05], respectively). This study clearly demonstrates beneficial properties of extracts made from CR and CS, and the findings can guide future development of the extracts into safe antimicrobial and antioxidant products and environmentally friendly antifoulants.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Agostini, S., J.M. Desjobert and G. Pergent. 1997. Distribution of phenolic compounds in the seagrass Posidonia oceania. Phytochemistry 48(4): 611-617. DOI: 10.1016/S0031-9422(97)01118-7.
Bel Mabrouk, S., M. Reis, M.L. Sousa, T. Ribeiro, J.R. Almeida, S. Pereira, J. Antunes, F. Rosa, V. Vasconcelos, L. Achour, A. Kacem and R. Urbatzka. 2020. The marine seagrass Halophila stipulacea as a source of bioactive metabolites against obesity and biofouling. Marine Drugs 18(2): 88. DOI: 10.3390/md18020088.
Bernard, P. and D. Pesando. 1989. Antibacterial and antifungal activity of extracts from the rhizomes of the Mediterranean seagrass Posidonia oceanica (L) Delile. Botanica Marina 32(2): 85-88. DOI: 10.1515/botm.1989.32.2.85.
Chang, C.C., M.H. Yang, H.M. Wen and J.C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10(3): 178-182. DOI: 10.38212/2224-6614.2748.
Chanthini, A.B., G. Balasubramani, R. Ramkumar, R. Sowmiya, M.D. Balakumaran, P.T. Kalaichelvan and P. Perumal. 2015. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology 153: 145-152. DOI: 10.1016/j.jphotobiol.2015.09.014.
Chatatikun, M. and A. Chiabchalard. 2013. Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn) root crude extracts. Journal of Chemical and Pharmaceutical Research 5(4): 97-102.
Da Gama, B.A., R.C. Pereira, A.R. Soares, V.L. Teixeira and Y. Yoneshige-Valentin. 2003. Is the mussel test a good indicator of antifouling activity? A comparison between laboratory and field assays. Biofouling 19: 161-169.
Ferrat, L., C. Fernandez and O. Dumay. 2001. Analysis of the phenolic compounds in Posidonia oceanica from sites colonized by Caulerpa taxifolia. In: The Fourth International Workshop on Caulerpa taxifolia (eds. V. Gravez, S. Ruitton, C.F. Boudouresque, L. Le Direac'h, A. Meinesz, G. Scabbia and M. Verlaque), pp. 185-194. GIS Posidonie, Marseilles, France.
Gavin, N.M. and M.J. Durako. 2011. Localization and antioxidant capacity of flavonoids from intertidal and subtidal Halophila johnsonii and Halophila decipiens. Aquatic Botany 95(3): 242-247. DOI: 10.1016/j.aquabot.2011.07.004.
Harborne, J.B. and C.A. Williams. 2000. Advances in Flavonoid Research since 1992. Phytochemistry 55(6): 481-504. DOI: 10.1016/s0031-9422(00)00235-1.
Harrison, P.G. 1982. Control of microbial growth and amphipod grazing by water-soluble compounds from leaves of Zostera marina. Marine Biology 67: 225-230.
Hellio, C., J.P. Marechal, B. Véron, G. Bremer, A.S. Clare and Y. Le Gal. 2004. Seasonal variation of antifouling activities of marine algae from the Brittany coast (France). Marine Biotechnology 6(1): 67-82. DOI: 10.1007/s10126-003-0020-x.
Ismet, M.S., E.D. Jayenti, P. Ismiati, R.P. Utomo1, E.S. Srimariana and Y.P. Hastuti. 2020. Potential of associative bacteria isolates from seagrass ecosystem. Proceedings of the IOP Conference Series: Earth and Environmental Science 429: 012030. DOI: 10.1088/1755-1315/429/1/012030.
Iyapparaj, P., P. Revathi, R. Ramasubburayan, S. Prakash, A. Palavesam, G. Immanuel, P. Anantharaman, A. Sautreau and C. Hellio. 2014. Antifouling and toxic properties of bioactive metabolites from the seagrasses Syringodium isoetifolium and Cymodocea serrulata. Ecotoxicology and Environmental Safety 103: 54-60. DOI: 10.1016/j.ecoenv. 2014.02.009.
Iyapparaj, P., P. Revathi, R. Ramasubburayan, S. Prakash, P. Anantharaman, G. Immanuel and A. Palavesam. 2013. Antifouling activity of the methanolic extract of Syringodium isoetifolium, and its toxicity relative to tributyltin on the ovarian development of brown mussel Perna indica. Ecotoxicology and Environmental Safety 89: 231-238.
Jensen, P.R., K.M. Jenkins, D. Porter and W. Fenical. 1998. Evidence that a new antibiotic flavones glycoside chemically defends the seagrass Thalassia testudinum against zoosporic fungi. Applied and Environmental Microbiology 64(4): 1490-1496. DOI: 10.1128/AEM.64.4.1490-1496.1998.
Jeyapragash, D., P. Subhashini, S. Raja, K. Abirami and T. Thangaradjou. 2016. Evaluation of in-vitro antioxidant activity of seagrasses: Signals for potential alternate source. Free Radicals and Antioxidants 6: 77-89. DOI: 10.5530/fra.2016.1.10.
Kanjana-opas, A. 2007. Rapid screening for antimicrobial activity. Workshop and Seminar on Chemistry, Biological Activities and Biodiversity of Marine Organisms. Burapha University, Chonburi, Thailand, 6-8 November 2007.
Kannan, R.R.R., R. Arumugam and P. Anantharaman. 2010a. Antibacterial potential of three
seagrasses against human pathogens. Asian Pacific Journal of Tropical Medicine 3(11): 890-893. DOI: 10.1016/S1995-7645(10)60214-3.
Kannan, R.R.R., R. Arumugam and P. Anantharaman. 2010b. In vitro antioxidant activities of ethanol extract from Enhalus acoroides (LF) Royle. Asian Pacific Journal of Tropical Medicine 3(11): 898-901. DOI: 10.1016/S1995-7645(10)60216-7.
Kannan, R.R.R., R. Arumugam and P. Anantharaman. 2012. Chemical composition and antibacterial activity of Indian seagrasses against urinary tract pathogens. Food Chemistry 135(4): 2470-2473. DOI: 10.1016/j.foodchem.2012.07.070.
Kannan, R.R.R., R. Arumugam, P. Iyapparaj, T. Thangaradjou and P. Anantharaman. 2013a. In vitro antibacterial cytotoxicity and haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food Chemistry 136(3-4): 1484-1489. DOI: 10.1016/j.foodchem.2012.09.006.
Kannan, R.R.R., R. Arumugam, T. Thangaradjou and P. Anantharaman. 2013b. Phytochemical constituents antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Research International 54(1): 1229-1236.
Kavitha, D., P. Kalaivani and V. Vanitha. 2020. A review on phytochemicals and biological activities of seagrass. Journal of Critical Reviews 7(7): 257-264.
DOI: 10.31838/jcr.07.05.01.
Kumar, C.S., D.V.L. Sarada, T.P. Gideon and R. Rengasamy. 2008. Antibacterial activity of
three South Indian seagrasses Cymodocea serrulata, Halophila ovalis and Zostera capensis. World Journal of Microbiology and Biotechnology 24(9): 1989-1992.
Lewmanomont, K. and H. Ogawa. 1995. Common Seaweeds and Seagrasses of Thailand. Integrated Promotion Technology, Bangkok, Thailand. 163 pp.
Loucks, K., D. Waddell and C. Ross. 2013. Lipopolysaccharides elicit an oxidative burst as a component of the innate immune system in the seagrass Thalassia testudinum. Plant Physiology and Biochemistry 70: 295-303. DOI: 10.1016/j.plaphy.2013.05.023.
Mani, A.E., V. Bharathi and J. Patterson. 2012. Antibacterial activity and preliminary phytochemical analysis of sea grass Cymodocea rotundata. International Journal of Microbiological Research 3(2): 99-103. DOI: 10.5829/idosi.ijmr.2012.3.2.6267.
Mannino, A.M. and C. Micheli. 2020. Ecological function of phenolic compounds from
Mediterranean Fucoid algae and seagrasses: An overview on the genus Cystoseira Sensu Lato and Posidonia oceanica (L.) Delile. Journal of Marine Science and Engineering 8(1): 19 DOI: 10.3390/jmse8010019.
Mayavu, P., S. Sugesh and V.J. Ravindran. 2009. Antibacterial activity of seagrass species against biofilm forming activity. Research Journal of Microbiology 4(8): 314-319. DOI: 10.3923/jm.2009.314.319.
Namadevan, P.B. and V. Varadharaj. 2017. Phytochemistry and ethnopharmacology of the seagrass Cymodoceaceae family-a review. Asian Journal of Pharmaceutical and Clinical Research 10(6): 19-23. DOI: 10.22159/ajpcr.2017.v10i6.18078.
Notarte, K.I., T. Yaguchi, S. Keisuke and T.E. Dela Cruz. 2018. Antibacterial, cytotoxic and trypanocidal activities of marine-derived fungi isolated from Philippine macroalgae and seagrasses. Acta Botanica Croatica 77(2): 141-151. DOI:10.2478/botcro-2018-0016.
Palaniappan, P., G. Sathishkumar and R. Sankar. 2015. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 138: 885-890. DOI: 10.1016/j.saa.2014.10.072.
Papazian, S., D. Parrot, B. Burýšková, F. Weinberger and D. Tasdemir. 2019. Surface chemical defense of the eelgrass Zostera marina against microbial foulers. Scientific Reports 9: 3323. DOI: 10.1038/s41598-019-39212-3.
Perez, J., C. Shen and C. Ragasa. 2018. Chemical constituents of Cymodocea rotundata Asch. & Schweinf. Pharmacognosy Journal 10(4): 620-621. DOI: 10.5530/ pj.2018.4.101.
Persoone, G. and J. Castritsi-Catharios. 1989. A simple bioassay with Artemia larvae to determine the acute toxicity of antifouling paints. Water Research 23(7): 893-897.
DOI: 10.1016/0043-1354(89)90014-6.
Pushpabharathi, N., M. Jayalakshmi, A. Parthasarathy and V. Varadharaj. 2018. Identification of bioactive compounds in Cymodocea serrulata-a seagrass by gas chromatography–mass spectroscopy. Asian Journal of Pharmaceutical and Clinical Research 11(9): 317. DOI: 10.22159/ajpcr.2018.v11i9.26744.
Rajeswaran, S., T.S. Somasundaram, S.S. Rengasamy, S. Kandasamy and R. Vilwanatha. 2019. Synthesis of eco-friendly facile nano-sized zinc oxide particles using aqueous extract of Cymodocea serrulata and its potential biological applications. Applied Physics A 125: 105. DOI: 10.1007/s00339-019-2404-4
RathnaKumari, P., P. Kolanchinathan, D. Siva, B. Abirami, V. Masilamani, G. John, S. Achiraman and A. Balasundaram. 2018. Antibacterial efficacy of seagrass
Cymodocea serrulata-engineered silver nanoparticles against prawn pathogen Vibrio parahaemolyticus and its combative effect on the marine shrimp Penaeus monodon. Aquaculture 493: 158-164. DOI: 10.1016/j.aquaculture.2018.04.061.
Ravikumar, S., K. Nanthinidevi, T.T. Ajithkumar and M. Ajmalkhan. 2011a. Antibacterial activity of seagrass species of Cymodocea serrulata against chosen bacterial fish pathogens. Annals of Biological Research 2(1): 88-93.
Ravikumar, S., M. Syed Ali, P. Anandh, M. Ajmalkhan and M. Dhinakaraj. 2011b. Antibacterial activity of Cymodocea serrulata root extract against chosen poultry pathogens. Indian Journal of Science and Technology 4(2): 98-100. DOI: 10.17485/ijst/2011/v4i2/29941.
Ravikumar, S., N. Thajuddin, P. Suganthi, I.S. Jacob and T. Vinodkumar. 2010. Bioactive
potential of seagrass bacteria against human bacterial pathogens. Journal of Environmental Biology 31(3): 387-389.
Santoso, J., S. Anwariyah, R.O. Rumiantin, A.P. Putri, N. Ukhty and Y. Yoshie-Stark. 2012.
Phenol content antioxidant activity and fibers profile of four tropical seagrasses from
Indonesia. Journal of Coastal Develpopment 15(2): 189-196.
Stanley, M.S., M.E. Callow, R. Perry, R.S. Alberte, R. Smith and J.A. Callow. 2002. Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel nontoxic crop protection technology. Phytopathology 92(4): 378-383.
Supaphon, P., S. Phongpaichit, V. Rukachaisirikul and J. Sakayaroj. 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 8(8): e72520.
DOI: 10.1371/journal.pone.0072520.
Sureda, A., A. Box, J. Terrados, S. Deudero and A. Pons. 2008. Antioxidant response of the seagrass Posidonia oceanica when epiphytized by the invasive macroalgae Lophocladia lallemandii. Marine Environmental Research 66(3): 359-363.
Todd, J.S., R.C. Zimmerman, P. Crews and R.S. Alberte. 1993. The antifouling activity of natural and synthetic phenolic acid sulphate esters. Phytochemistry 34(2): 401-404.
Verger, L.H.T. and A. Develi. 1996. Phenolic acids in healthy and infected leaves of Zostera marina and their growth limiting properties towards Labyrinthula zosterae. Aquatic Botany 58(1): 65-72. DOI: 10.1016/S0304-3770(96)01115-1.
Vilas-Boas, C., E. Sousa, M. Pinto and M. Correia-da-Silva. 2017. An antifouling model from the sea: A review of 25 years of zosteric acid studies. Biofouling 33(10): 927-942.
Wagner, H. and S. Bladt. 1996. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed. Springer-Verlag, Berlin, Germany. 399 pp.
Wisespongpand, P., C. Kaewsuralikhit, A. Kanthawong and S. Tunkijjanukij. 2010. Screening of extracts from marine plants for antifouling activity. Proceedings of 48th Kasetsart University Annual Conference 2010: 447-457.
Wisespongpand, P., S. Phuynoi, C. Kaewsuralikhit and A. Kanthawong. 2014.
Antioxidant activities of extracts from seagrasses. Proceedings of 52nd Kasetsart University Annual Conference 2014: 1333-1341.
Wisespongpand, P., T. Srisombat., S. Patarajinda and C. Aryutthaka. 2005. Screening of
seagrass extracts for antimicrobial activities. Proceedings of 43rd Kasetsart
University Annual Conference 2005: 326-333.
Wisespongpand, P., W. Srichomngam, C. Kaewsuralikhit, A. Kanthawong and S. Tunkijjanukij. 2012. Screening of antimicrobial extracts from seaweeds and seagrasses. Proceedings of Marine Science Conferences 2010: 373-382.
Zapata, O. and C. McMillan. 1979. Phenolic acids in seagrasses. Aquatic Botany 7: 307-317.