Effects of Aquatic Vegetation and Water Turbidity on Chlorpyrifos-Induced Mortality of Nile Tilapia Oreochromis niloticus

Main Article Content

Rajib Majumder


Chlorpyrifos is a common organophosphorus insecticide, and agricultural runoff containing this agrochemical pollutes adjacent water bodies. Static bioassays were carried out in the laboratory to evaluate if the presence of aquatic vegetation and water turbidity could reduce acute toxicity of the emulsified concentrate (EC) of chlorpyrifos (20% EC) to Nile tilapia Oreochromis niloticus. The 72 h-LC50 of chlorpyrifos alone on Nile tilapia was determined as 52 µg·L-1, whereas the LC50 value of chlorpyrifos was 80 µg·L-1 in the presence of the floating aquatic weed (AW) Azolla pinnata (150 g·10 L-1). The LC50 value of the formulation of chlorpyrifos with aquatic weed (CPF+AW) was about 1.45 to 1.7 times higher than that of chlorpyrifos (CPF) alone in clean water. The toxicity of chlorpyrifos decreased over time, but remained unchanged after 72 h in the presence of A. pinnata (150 g·10 L-1) in water. Chlorpyrifos toxicity to fish was also reduced when the turbidity of water was increased, both through the addition of organic compost and clay materials. In conclusion, the biological and physicochemical parameters of the receiving aqueous medium influence the toxicity of chlorpyrifos to fish.


Download data is not yet available.

Article Details



Albers, J.W., P. Cole, R.S. Greenberg, J.S. Mandel, R.R. Monson, J.H. Ross, W.R. Snodgrass, A. Spurgeon and M.V. Gemert. 1999. Analysis of chlorpyrifos exposure and human health: Expert panel report. Journal of Toxicology and Environmental Health, Part B Critical Reviews 2(4): 301-324. DOI: 10.1080/109374099281151.

American Public Health Association (APHA). 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, D.C., USA. 1193 pp.

Amin, M., A.R. Gurmani, M. Rafique, S.U. Khan, A. Mehmood, D. Muhammad and J.H. Syed. 2021. Investigating the degradation behavior of Cypermethrin (CYP) and Chlorpyrifos (CPP) in peach orchard soils using organic/inorganic amendments. Saudi Journal of Biological Sciences 28: 5890-5896. DOI: 10.1016/j.sjbs.2021.06.035.

Amiri, B.M., E.G. Xu, A. Kupsco, M. Giroux, M. Hoseinzadeh and D. Schlenk. 2018. The effect of chlorpyrifos on salinity acclimation of juvenile rainbow trout (Oncorhynchu smykiss). Aquatic Toxicology 195: 97-102. DOI: 10.1016/j.aquatox.2017.12.011.

Aziz, H., G. Murtaza, M. Usman, S.M.A. Basra and A. Niaz. 2018. Enhancing chlorpyrifos sorption potential of agricultural soil by biochar and compost addition. Pakistan Journal of Agricultural Sciences 55(4): 833-841. DOI: 0.21162/PAKJAS/18.7463.

Barron, M.G. and K.B. Woodburn. 1995. Ecotoxicology of chlorpyrifos. Reviews of Environmental Contamination and Toxicology 144: 1-93. DOI: 10.1007/978-1-4612-2550-8_1.

Chowdhury, A.Z., S.A. Zahan, M.N. Islam, M. Moniruzzaman, M.K. Alam, M.A. Zaman, N. Karim and S.H. Gan. 2012. Occurrence of organophosphorous and carbamate pesticide residues in surface water samples from the Rangpur district of Bangladesh. Bulletin of Environmental Contamination and Toxicology 89: 200-207. DOI: 10.1007/s00128-012-0641-8.

Cole, M.A. 1998. Remediation of soils contaminated with toxic organic compounds. In: Beneficial Co-Utilization of Agricultural, Municipal and Industrial By-Products (eds S. Brown, J.S. Angle and L. Jacobs), pp. 175-194. Springer, Dordrecht, Netherlands.

Dabrowski, J.M., A. Bollen and R. Schulz. 2005. Combined effects of discharge, turbidity and pesticides on mayfly behavior: experimental evaluation of spray-drift and runoff scenarios. Environmental Toxicology and Chemistry 24(6): 1395-1402. DOI: 10.1897/04-222R.1.

David, M., R.M. Kartheek and G.P. Manjunath. 2018. Acute and sublethal toxicity of chlorpyrifos on developmental stages of Dattaphrynus melanostictus. Journal of Applied Pharmaceutical Science 8(6): 87-93. DOI: 10.7324/japs.2018.8612.

De Souza, T.D., A.C. Borges, A.T. De Matos, A.H. Mounteer and M.E.L.R. De Queiroz. 2017. Removal of chlorpyrifos insecticide in constructed wetlandswith different plant species. Revista Brasileira de Engenharia Agrícola E Ambiental (Agriambi) 21(12): 878-883. DOI: 10.1590/1807-1929/agriambi.v21n12p878-883.

Deb, N. and S. Das. 2013. Chlorpyrifos toxicity in fish: A review. Current World Environment 8(1): 77-84. DOI: 10.12944/CWE.8.1.17.

Demetrio, P.M., C. Bonetto and A.E. Ronco. 2014. The effect of cypermethrin, chlorpyrifos and glyphosate active ingredients and formulations on Daphnia magna (Straus). Bulletin of Environmental Contamination and Toxicology 93: 268-273. DOI: 10.1007/s00128-014-1336-0.

Finney, D.J. 1971. Probit Analysis. Cambridge University Press, London, UK. 333 pp.

Gebremariam, S.Y., M.W. Beutel, D.R. Yonge, M. Flury and J.B. Harsh. 2012. Adsorption and desorption of chlorpyrifos to soils and sediments. In: Reviews of Environmental Contamination and Toxicology (ed. D.M. Whitacre), pp. 123-175. Springer-Verlag New York Inc., New York, USA.

Gomez, K.A. and A.A. Gomez. 1984. Statistical Procedures for Agricultural Research, 2nd ed. John Wiley and Sons, NewYork, USA. 680 pp.

Hatami, M., M. Banaee and B.N. Haghi. 2019. Sub-lethal toxicity of chlorpyrifos alone and in combination with polyethylene glycol to common carp (Cyprinus carpio). Chemosphere 219: 981-988. DOI: 10.1016/j.chemosphere.2018.12.077.

John, E.M. and J.M. Shaike. 2015. Chlorpyrifos: pollution and remediation. Environmental Chemistry Letter 13: 269-291. DOI: 10.1007/s10311-015-0513-7.

Jones, K.D. and W. Huang. 2003. Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic in the presence of compost humic substances in aqueous systems. Journal of Hazardous Materials 103(1-2): 93-105. DOI: 10.1016/s0304-3894(03)00227-9.

Kamrin, M.A. 1997. Pesticide Profiles Toxicity, Environmental Impact, and Fate. CRC/Lewis Publishers, Boca Raton, Florida, USA. 676 pp.

Lee, K.Y., S.E. Strand and S.L. Doty. 2012. Phytoremediation of chlorpyrifos by Populus and Salix. International Journal of Phytoremediation 14: 48-61. DOI: 10.1080/15226514.2011.560213.

Li, D., Q. Huang, M. Lu, L. Zhang, Z. Yang, M. Zong and L. Tao. 2015. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere 135: 387-393. DOI: 10.1016/j.chemosphere.2015.05.024.

Majumder, R. and A. Kaviraj. 2019. Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug and Chemical Toxicology 42(5): 487-495. DOI: 10.1080/01480545.2018.1425425.

Majumder, R. and A. Kaviraj. 2021. Acute toxicity of cypermethrin to freshwater fish Oreochromis niloticus: Influence of aquatic weed and turbidity of water. National Academy Science Letters 44: 5-7. DOI: 10.1007/s40009-020-00944-w.

Marigoudar, S.R., A. Nagarjuna, P. Karthikeyan, D. Mohan and K.V. Sharma. 2018. Comparative toxicity of chlorpyrifos: Sublethal effects on enzyme activities and histopathology of Mugil cephalus and Chanos chanos. Chemosphere 211: 89-101. DOI: 10.1016/j.chemosphere.2018.07.137.

Mayer, F.L. Jr. and M.R. Ellersieck. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. US Department of the Interior, Fish and Wildlife Service, Washington, D.C., USA. 581 pp.

Moore, M.T., R. Kroger and C.R. Jackson. 2011. The role of aquatic ecosystems in the elimination of pollutants. In: Ecological Impacts of Toxic Chemicals (eds. F. Sanchez-Bayo, P.J. van den Brink and R.M. Mann), pp. 225-237. Bentham Science Publishers, Oak Park, USA.

Muňoz, A.R., M. Trevisan and E. Capri. 2009. Sorption and photodegradation of chlorpyrifos on riparian and aquatic macrophytes. Journal of Environmental Science and Health Part B 44: 7-12. DOI: 10.1080/03601230802519496.

Osman, N.S. and A.O. Abdelbagi. 2018. Removal of Chlorpyrifos from aqueous solution by using clay of El-gash River, Kassala state, Sudan. University of Bakht Alruda, Refereed Quarterly Scientific Journal 23: 43-57.

Patra, R.W., J.C. Chapman, R.P. Lim, P.C. Gehrke and R.M. Sunderam. 2015. Interactions between water temperature and contaminant toxicity to freshwater fish. Environmental Toxicology and Chemistry 34(8): 1809-1817. DOI: 10.1002/etc.2990.

Pawar, A.P., S.V. Sanaye, S. Shyama, R.A. Sreepada and A.S. Dake. 2020. Effects of salinity and temperature on the acute toxicity of the pesticides, dimethoate and chlorpyrifos in post-larvae and juveniles of the whiteleg shrimp. Aquaculture Reports 16: 100240. DOI: 10.1016/j.aqrep.2019.100240.

Prasad, S.M., A. Singh and P. Singh. 2015. Physiological, biochemical and growth responses of Azolla pinnata to chlorpyrifos and cypermethrin pesticides exposure: a comparative study. Chemistry and Ecology 31(3): 285-298. DOI: 10.1080/02757540.2014.950566.

Qurie, M., M. Khamis, I. Ayyad, L. Scrano, F. Lelario, S.A. Bufo, G. Mecca and R. Karaman. 2015. Removal of chlorpyrifos using micelle–clay complex and advanced treatment technology, Desalination and Water Treatment 57(33): 15687-15696. DOI: 10.1080/19443994.2015.1096836.

Scheil, V. and H.R. Kӧhler. 2009. Influence of nickel chloride, chlorpyrifos and imidacloprid in combination with different temperatures on the embryogenesis of the zebrafish Danio rerio. Archives of Environmental Contamination and Toxicology 56: 238-243. DOI: 10.1007/s00244-008-9192-8.

Schmuck, R., W. Pfleeger, R. Grau, U. Hollihn and R. Fischer.1994. Comparison of short-term aquatic toxicity: formulation vs active ingredients of pesticides. Archieves of Environmental Contamination and Toxicology 26: 240-250. DOI: 10.1007/BF00224811.

Siedt, M., A. Schäffer, E.C.S. Kilian, M. Nabel, M. Roß-Nickoll and J.T. van Dongen. 2021. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Science of the Total Environment 751: 141607. DOI: 10.1016/j.scitotenv.2020.141607.

Song, U. 2017. Post-remediation use of macrophytes as composting materials for sustainable management of a sanitary landfill. International Journal of Phytoremediation 19(4): 395-401. DOI: 10.1080/15226514.2016.1244156.

Sood, A., P.L. Uniyal, R. Prasanna and A.S. Ahluwalia. 2012. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41: 122-137. DOI: 10.1007/s13280-011-0159-z.

Srinivasan, R. 2011. Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Advances in Materials Science and Engineering 2011: 872531. DOI: 10.1155/2011/872531.

Suciu, N.A. and E. Capri. 2009. Adsorption of chlorpyrifos, penconazole and metalaxyl from aqueous solution by modified clays, Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 44(6): 525-532. DOI: 10.1080/03601230902997543.

Sud, D., J. Kumar, P. Kaur and P. Bandal. 2020. Toxicity, natural and induced degradation of chlorpyrifos. Journal of Chilean Chemical Society 65(2): 4807-4816. DOI: 10.4067/S0717-97072020000204807.

Sun, F. and H. Chen. 2008. Monitoring of pesticide chlorpyrifos residue in farmed fish: Investigation of possible sources. Chemosphere 71: 1866-1869. DOI: 10.1016/j.chemosphere.2008.01.034.

Tejada, M., I. Gómez and M.D. Toro. 2011. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology. Ecotoxicology and Environmental Safety 74: 2075-2081. DOI: 10.1016/j.ecoenv.2011.07.005.

Velmurugan, B., E.I. Cengiz, M. Yolcu, P. Uğurlu and M. Selvanayagam. 2020. Cytological and histological effects of pesticide chlorpyriphos in the gills of Anabas testudineus. Drug and Chemical Toxicology 43(4): 409-414. DOI: 10.1080/01480545.2018.1497052.

Wang, Q., C. Li, R. Zheng and X. Que. 2016. Phytoremediation of chlorpyrifos in aqueous system by riverine macrophyte, Acorus calamus: toxicity and removal rate. Environmental Science and Pollution Research 23: 16241-16248. DOI: 10.1007/s11356-016-6673-6.

Winer, B.J. 1971. Statistical Principles in Experimental Design, 2nd ed. McGraw-Hill, New York, USA. 924 pp.

Zahran, E., E. Risha, W. Awadin and D. Palić. 2018. Acute exposure to chlorpyrifos induces reversible changes in health parameters of Nile tilapia (Oreochromis niloticus). Aquatic Toxicology 197: 47-59. DOI: 10.1016/j.aquatox.2018.02.001.