Properties of Proteinaceous Antimicrobial Compound Produced by Bacillus thuringiensis strain SS01 Isolated from Mangrove Forest in Thailand

Main Article Content

Nongnapat Kamaneewan
Pramvadee Tepwong
Juta Mookdasanit
Pongtep Wilaipun

Abstract

The mangrove forest is a dynamic ecosystem, with a diverse ecology containing plants, animals and microorganisms. This ecosystem represents an interesting natural source of novel and useful biological substances. The aims of this study were to determine the optimum conditions for antimicrobial agent production of target bacterial strain SS01 isolated from a mangrove ecosystem as well as some significant factors affecting its antimicrobial activity. According to biochemical test results and 16S rDNA gene sequence, strain SS01, which was isolated from soil from a mangrove forest in central Thailand, was identified as Bacillus thuringiensis. The optimum conditions for antimicrobial production of B. thuringiensis strain SS01 was observed when culturing in M17 broth without NaCl at 35 °C. The highest antimicrobial activity for inhibiting Micrococcus luteus IFO 12708 (800 AU·mL-1) was found during culture for 36-48 h, with pH 6.77-7.06. Moreover, the secondary metabolite in CFNS exhibited a proteinaceous nature, which is the most important characteristic of a bacteriocin. The broad-spectrum antimicrobial compound in the cell-free neutralized supernatant (CFNS) produced from B. thuringiensis strain SS01 was heat tolerant, stable from pH 2-8, and displayed bacteriostatic mode of action against M. luteus IFO 12708. Its antimicrobial activity was partially reduced under 3-11% (w/v) NaCl. Consequently, the antimicrobial compound possessing unique and interesting properties produced by B. thuringiensis strain SS01 shows high potential for applications in food products, animal feed and related industries.

Article Details

How to Cite
Kamaneewan, N. ., Tepwong, P. ., Mookdasanit, J. ., & Wilaipun, P. . (2022). Properties of Proteinaceous Antimicrobial Compound Produced by Bacillus thuringiensis strain SS01 Isolated from Mangrove Forest in Thailand. Journal of Fisheries and Environment, 46(2), 15–28. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/255350
Section
Articles

References

Aarti, C., A. Khusro, M.V. Arasu, P. Agastian and N.A. Al-Dhabi. 2016. Biological potency and characterization of antibacterial substances produced by Lactobacillus pentosus isolated from Hentak, a fermented fish product of North-East India. SpringerPlus 5: 1743. DOI: 10.1186/s40064-016-3452-2.

Abriouel, H., C.M.A.P. Franz, N.B. Omar and A. Galvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews 35: 201-232.

Alarfaj, A.A., M. Arshad, E.N. Sholkamy and M.A. Munusamy. 2015. Extraction and characterization of Polyhydroxybutyrates (PHB) from Bacillus thuringiensis KSADL127 isolated from mangrove environments of Saudi Arabia. Brazilian Archives of Biology and Technology 58(5): 781-788.

Azman, A.S., I. Othman, C.M. Fang, K.G. Chan, B.H. Goh and L.H. Lee. 2017. Antibacterial, anticancer and neuroprotective activities of rare actinobacteria from mangrove forest soils. Indian Journal of Microbiology 57(2): 177-187.

Bharti, V., A. Mehta, S. Singh, N. Jain, L. Ahirwal and S. Mehta. 2015. Bacteriocin: A novel approach for preservation of food. International Journal of Pharmacy and Pharmaceutical Sciences 7(9): 20-29.

Bravo, A., S.S. Gill and M. Soberón. 2010. Bacillus thuringiensis: Mechanisms and use. In: Encyclopedia of Microbiology (ed. T.M. Schmidt), pp. 307-332. Department of Ecology and Evolutionary Biology, University of Michigan, Michigan, USA.

Chalasani, A.G., G. Dhanarajan, S. Nema, R. Sen and U. Roy. 2015. An antimicrobial metabolite from Bacillus sp.: Significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Frontiers in Microbiology 6: 1335. DOI: 10.3389/fmicb.2015.01335.

Chatterjee, S., P. Mukhopadhyay, D. Chakraborty and T.K. Dangar. 2016. Characterization and mosquitocidal potency of Bacillus thuringiensis Isolate SB1 from the Sundarbans Mangrove, West Bengal, India. The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences 88(1): 403-409. DOI: 10.1007/s40011-016-0773-4.

Chehimi, S., F. Delalande, S. Sable, M. Hajlaoui, A. Van Dorsselaer, F. Limam and A. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Canadian Journal of Microbiology 53: 284-290.

De la Fuente-Salcido, N., M.G. Alanıs-Guzman, D.K. Bideshi, R. Salcedo-Hernandez, M. Bautista-Justo and J.E. Barboza-Corona. 2008. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Archives of Microbiology 190: 633-640.

De Vuyst, L. and E.J. Vandamme. 1992. Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. Journal of General Microbiology 138: 571-578.

Duarte, F., R. Sepulveda, R. Araya, S. Flores, T. Perez-Acle, W. Gonzales, D. Gonzales, G. Neshich, I. Neshich, I. Mazoni and D.S. Holmes. 2011. Mechanisms of protein stabilization at very low pH. Proceeding of the 19th International Biohydrometallurgy Symposium 2011: 349-353.

Ennahar, S., T. Sashihara, K. Sonomoto and A. Ishizaki. 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiology Reviews 24: 85-106.

Gray, E.J., K.D. Lee, A.M. Souleimanov, M.R. Di Falco, X. Zhou, A. Ly, T.C. Charles, B.T. Driscoll and D.L. Smith. 2006. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. Journal of Applied Microbiology 100(3): 545-554.

Haryani, Y., R. Hilma, N. Delfira, T. Martalinda, F. Puspita, A. Friska, D. Juwita, A. Farniga and F. Ardi. 2020. Antibacterial activity of Achromobacter sp. and Bacillus sp., bacterial endophytes derived from Mangrove Ceriops tagal (Perr.) C.B. Robb. IOP Conference Series: Materials Science and Engineering 833: 012013. DOI: 10.1088/1757-899X/833/1/012013.

Hu, H.Q., X.S. Li and H. Hea. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control 54(3): 359-365.

Huang, T., X. Zhang, J. Pan, X. Su, X. Jin and X. Guan. 2016. Purification and characterization of a novel cold shock protein-like bacteriocin synthesized by Bacillus thuringiensis. https://www.nature.com/articles/srep35560.pdf?proof=t%C2%A0. Cited 1 Feb 2022.

Hwanhlem, N., J.M. Chobert and A. H-Kittikun. 2014. Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in southern Thailand as potential bio-control agents in food: Isolation, screening and optimization. Food Control 41: 202-211.

Kamoun, F., I.B. Fguira, N.B. Ben Hassen, H. Mejdoub, D. Lereclus and S. Jaoua. 2011. Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Applied Biochemistry and Biotechnology 165: 300-314. DOI 10.1007/s12010-011-9252-9.

Kathiresan, K. and S.Z. Qasim. 2005. Biodiversity of Mangrove Ecosystems. Hindustan Publishing, New Delhi, India. 251 pp.

Khan, M.N., H. Lin, M. Li, J. Wang, Z.A. Mirani, S.I. Khan, M.A. Buzdar, I. Ali and K. Jamil. 2017. Identification and growth optimization of a Marine Bacillus DK1-SA11 having potential of producing broad spectrum antimicrobial compounds. Pakistan Journal of Pharmaceutical Sciences 30(3): 839-853.

Klaenhammer, T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Review 12: 39-85.

Kumariya, R., A.K. Garsa, Y.S. Rajput, S.K. Sood, N. Akhtar and S. Patel. 2019. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbiological Pathogenesis 128: 171-177.

Kumar, S, C.J. Tsai and R. Nussinov. 2000. Factors enhancing protein thermostability. Protein Engineering 13: 179-191.

Lampel, K.A., S. Al-Khaldi and S.M. Cahill. 2012. Handbook of foodborne pathogenic microorganisms and natural toxins. https://www.fda.gov/media/83271/download. Cited 12 Mar 2022.

Li, X., L. Guo, Y. Liu, Y. Wang, Z. She, M. Guo and Y. Zhao. 2020. Effect of salinity and pH on dark fermentation with thermophilic bacteria pretreated swine wastewater. Journal of Environmental Management 271: 1-8.

Maeda, M., E. Mizuki, M. Hara, R. Tanaka, T. Akao, S. Yamashita and M. Ohba. 2001. Isolation of Bacillus thuringiensis from intertidal brackish sediments in mangroves. Microbiological Research 156: 195-198.

Marshall, K., S. Shakya, A.R. Greenhill, G. Padilla, A. Baker and J.M. Warner. 2010. Antibiosis of Burkholderia ubonensis againist Burkholderia pseudomallei, the causative agent for melioidosis. The Southeast Asian Journal of Tropical Medicine and Public Health 41(4): 904-912.

Mayr-Harting, A., A.J. Hedges and R.C.W. Berkeley. 1972. Method for studying bacteriocins. In: Methods in Microbiology 7A (eds. T. Beergen and J.R. Norris), pp. 315-422. Academic Press, Inc., London, UK.

Narendran, R. and K. Kathiresan. 2016. Antimicrobial activity of crude extracts from Mangrove-derived Trichoderma species against human and fish pathogens. Biocatalysis and Agricultural Biotechnology 6: 189-194.

Nazari, M. and D.L. Smith. 2020. A PGPR-produced bacteriocin for sustainable agriculture: A review of Thuricin 17 characteristics and application. Frontiers in Plant Science 11: 1-7. DOI: 10.3389/fpls.2020.00916.

Nes, I.F., D.A. Brede and D.B. Diep. 2013. Class II non-lantibiotic bacteriocins. In: Handbook of Biologically Active Peptides ( ed. A.J. Kastin), pp. 85-92. Academic Press, Massachusetts, USA.

Pandey, R.M. and S.K. Upadhyay. 2012. Food additive. In: Food Additive (ed. Y. El-Samragy), pp. 1-30. University of Rijeka, Rijeka, Croatia.

Ramachandran, R., A.G. Chalasani, R. Lal and U. Roy. 2014. A broad-spectrum antimicrobial activity of Bacillus subtilis RLID12.1. The Scientific World Journal 2014: 968487. DOI: 10.1155/2014/968487.

Ramasubburayan, R., S. Sumathi, D.M. Bercy, G. Immanuel and A. Palavesam. 2015. Antimicrobial, antioxidant and anticancer activities of mangrove associated bacterium Bacillus subtilis subsp. subtilis RG. Biocatalysis and Agricultural Biotechnology 4(2): 158-165.

Reis, J.A., A.T. Paula, S.N. Casarotti and A.L.B. Penna. 2012. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews 4: 124-140.

Rigonato, J., A.D. Kent, T. Gumiere, L.H.Z. Branco, F.D. Andreote and M.F. Fiore. 2018. Temporal assessment of microbial communities in soils of two contrasting mangroves. Brazilian Journal of Microbiology 49: 87-96.

Salazar-Marroquín, E.L., L.J. Galán-Wong, V.R. Moreno-Medina, M.Á. Reyes-López and B. Pereyra-Alférez. 2016. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications. Reviews in Medical Microbiology 3: 95-101.

Sangkanu, S., V. Rukachaisirikul, C. Suriyachadkun and S. Phongpaichit. 2017. Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microbial Pathogenesis 112: 303-312.

Saravanakumar, K., R. Anburaj, V. Gomathi and K. Kathiresan. 2016. Ecology of soil microbes in a tropical mangrove forest of south east coast of India. Biocatalysis and Agricultural Biotechnology 8: 73-85.

Simons, A., K. Alhanout and R.E. Duval. 2020. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8: 639: DOI: 10.3390/microorganisms8050639.

Sinha, R. and S.K. Khare. 2014. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Frontiers in Microbiology 9(5): 165. DOI: 10.3389/fmicb.2014.00165.

Su, X., L. Li, J. Pan, X. Fan, S. Ma, Y. Guo, A.L. Idris, L. Zhang, X. Pan, I. Gelbič, T. Huang and X. Guan. 2020. Identification and partial purification of thuricin 4AJ1 produced by Bacillus thuringiensis. Archives of Microbiology 202: 755-763. DOI: 10.1007/s00203-019-01782-1.

Thatoi, H., B.C. Behera, R.R. Mishra and S.K. Dutta. 2012. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Annals of Microbiology 63(1): 1-19.

Ugras, S., K. Sezen, H. Kati and Z. Demirbag. 2013. Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. Journal of Microbiology and Biotechnology 23(2): 167-176.

Ujváry, I. 2010. Pest control agents from natural products. In: Hayes' Handbook of Pesticide Toxicology (ed. R. Krieger), pp. 119-229. University of California, Riverside, USA.

Usta Ak, A., E. Demirkan, M. Cengiz, T. Sevgi, B. Zeren and M. Abdou. 2019. Optimization of culture medium for the production and partial purification and characterization of an antibacterial activity from Brevibacillus laterosporus strain EA62. Romanian Biotechnological Letters 24(4): 705-713. DOI: 10.25083/rbl/24.4/705.713.

Walters, B.B., P. Rönnbäck, J.M. Kovacs, B. Crona, S.A. Hussain, R. Badola, J.H. Primavera, E. Barbier and F. Dahdouh-Guebas. 2008. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany 89: 220-236.

Wilaipun, P., T. Zendo, M. Sangjindavong, S. Nitisinprasert, V. Leelawatcharamas, J. Nakayama and K. Sonomoto. 2002. Influence of physical factors and various complex media on growth and bacteriocin production of two-synergistic peptide with heat stable bacteriocin producer, Enterococcus faecium NKR-5-3, isolated from Thai fermented fish. Kasetsart Journal (Natural Science) 36: 268-277.

Zimbro, M.J., D.A. Power, S.M. Miller, G.E. Wilson and J.A. Johnson. 2009. DifcoTM & BBLTM Manual: Manual of Microbiological Culture Media. Becton, Dickinson and Company, Maryland, USA. 686 pp.