Characterization and Lipolytic Activity of Staphylococcus Strains Isolated from Thai Fermented Fish Products
Main Article Content
Abstract
Twelve tetracocci isolated from Thai fermented fish products (pla-ra, kung-chom and nam-pla) were screened for their lipolytic activity on agar plates. Most of them exhibited lipolytic activity on the medium supplemented with 1% (v/v) of tributyrin, Tween 20, Tween 40, Tween 60 or Tween 80. The isolates exhibited lipolytic activity ranging from 0.042±0.032 to 9.548±0.969 U·mL-1 and from 0.111±0.023 to 5.939±0.119 U.mL-1 when cultivated in broth supplemented with 1% (v/v) Tween 20 and Tween 80, respectively. In the media containing 1% (v/v) coconut oil, lard or palm oil, the lypolytic activity was 0.042±0.032 to 9.548±0.969 U·mL-1, 0.548±0.009 to 6.00±0.136 U·mL-1 and 0.83±0.020 to 5.25±0.030 U.mL-1, respectively, when incubated at 37 ℃ for 24 h. The isolates were identified as members of the genus Staphylococcus based on their phenotypic characteristics and 16S rRNA gene sequences. They were closely related to S. nepalensis NCTC 13834T, S. condimenti DSM 11674T, S. simulans ATCC 27848T, S. hominis subsp. novobiosepticu GTC 1228T, S. edaphicus P5085T, S. saprophyticus subsp. saprophyticus ATCC 15305T and S. lloydii ATCC 43959T, with 99.78-100 % similarity. Isolate SPJ-1 from kung-chom, identified as S. condimenti, exhibited the highest lipolytic activity (6.287±0.159, 5.939±0.119 and 5.996±0.136 U.mL-1) when cultivated in Tween 20, Tween 80 and lard.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Barrow, G.I. and R.K.A. Feltham. 1993. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge University Press, Cambridge, UK. 331 pp.
Behera, A.R., A. Veluppal and K. Dutta. 2019. Optimization of physical parameters for enhanced production of lipase from Staphylococcus hominis using response surface methodology. Environmental Science and Pollution Research 26: 34277-34284.
Boateng, L., R. Ansong, W.B. Owusu and M. Steiner-Asiedu. 2016. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Medical Journal 50(3): 189-196.
Boekema, K.H.L., A. Beselin, M. Breuer, B. Hauer, M. Koster, F. Rosenau, K.E. Jaeger and E. Tommassen. 2007. Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appiled and Environmental Microbiology 73: 3838-3844.
Boonmahome, P. and W. Mongkolthanaruk. 2013. Lipase-producing bacterium and its enzyme characterization. Journal of Life Sciences and Technologies 1: 196-200.
Brigante, G., M.G. Menozzi, B. Pini, R. Porta, P. Somenzi, A. Sciacca, T. Spanu and S. Stefani. 2008. Identification of coagulase-negative staphylococci by using the BD phoenix system in the low-inoculum mode. Journal of Clinical Microbiology 46: 3826-3828.
Chauhan, M. and V.K. Garlapati. 2013. Production and characterization of a halo-, solvent-, thermo-tolerant alkaline lipase by Staphylococcus arlettae JPBW-1, isolated from rock salt mine. Applied Biochemistry and Biotechnology 171: 1429-1443.
Chaves‐López, C., A. Serio, C.D. Grande‐Tovar, R. Cuervo‐Mulet, J. Delgado‐Ospina and A. Paparella. 2014. Traditional fermented foods and beverages from a microbiological and nutritional perspective: the Colombian heritage. Comprehensive Reviews in Food Science and Food Safety 13(5): 1031-1048.
Ebrahimpour, A., R.N.Z.R.A. Rahman, D.H.E. Ch'ng, M. Basri and A.B. Salleh. 2008. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnology 8(1): 96. DOI: 10.1186/1472-6750-8-96.
Esakkiraj, P., M. Rajkumarbharathi, A. Palavesam and G. Immanuel. 2010. Lipase production by Staphylococcus epidermidis CMST-Pi 1 isolated from the gut of shrimp Penaeus indicus. Annals of Microbiology 60: 37-42.
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Fukami, K., S. Ishiyama, H. Yaguramaki, T. Masuzawa, Y. Nabeta, K. Endo and M. Shimoda. 2002. Identification of distinctive volatile compounds in fish sauce. Journal of Agricultural and Food Chemistry 50: 5412-5416.
Giyatmi and H.E. Irianto. 2017. Enzymes in fermented fish. Advances in Food and Nutrition
Research 80: 199-216.
Guan, L., K.H. Cho and J.H. Lee. 2011. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiology 28: 101-113.
Hammes, W.P., I. Bosch and G. Wolf. 1995. Contribution of Staphylococcus carnosus and
Staphylococcus piscifermentans to the fermentation of protein foods. Journal of Applied Bacteriology 79(S): 76S-83S.
Hasan, F., A.A. Shah and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology 39(2): 235-251.
Heo, S., J.H. Lee and D.W. Jeong. 2020. Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods. Food Science and Biotechnology 29(8): 1023-1035.
Hugas, M. and J.M. Monfort. 1997. Bacterial starter cultures for meat fermentation. Food Chemistry 59: 547-554.
Irlinger, F. 2008. Safety assessment of dairy microorganisms: coagulase-negative staphylococci. International Journal of Food Microbiology 126: 302-310.
Jaeger, K.E., S. Ransac, B.W. Dijkstra, C. Colson, M. van Heuvel and O. Misset. 1994. Bacterial lipases. FEMS Microbiology Reviews 15(1): 29-63.
Javed, S., F. Azeem, S. Hussain, I. Rasul, M.H. Siddique, M. Riaz, M. Afzal, A. Kouser and H. Nadeem. 2018. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology 132: 23-34.
Jeong, D.W., H.R. Kim, G. Jung, S. Han, C.T. Kim and J.H. Lee. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. Journal of Microbiology and Biotechnology 24: 648-660.
Jessen, B. 1995. Fermented meats. In: Starter Cultures for Meat Fermentation (eds. G. Campbell-Platt and P.E. Cook), pp. 130-154. Blackie Academic and Professional, Glasgow, Scotland. Joseph, B., P.W. Ramteke and P.A. Kumar. 2006. Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. Journal of General and Applied Microbiology 52(6): 315-320.
Khoramnia, A., O.M. Lai, A. Ebrahimpour, C.J. Tanduba, T.S. Voon and S. Mukhlis. 2010. Thermostable lipase from a newly isolated Staphylococcus xylosus strain; process optimization and characterization using RSM and ANN. Electronic Journal of Biotechnology 13(5): 1-16.
Lane, D.J. 1991. 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics (eds. E. Stackebrandt and M. Goodfellow), pp. 115-175. John Wiley and Sons, New York, USA.
Leroy, F., J. Verluyten and L. De Vuyst. 2006. Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology 106: 270-285.
Mauriello, G., A. Casaburi, G. Blaiotta and F. Villani. 2004. Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science 67: 149-158.
Nielsen, C.K., J. Kjems, T. Mygind, T. Snabe and R.L. Meyer. 2016. Effects of Tween 80 on growth and biofilm formation in laboratory media. Frontiers in Microbiology 7: 1878. DOI: 10.3389/fmicb.2016.01878.
Phithakpol, B. and M. Kasetsat. 1995. The Traditional Fermented Foods of Thailand. Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand. 157 pp.
Phoottosavako, M., S. Keeratipibul, S. Techo and S. Tanasupawat. 2015. Identification and characterization of lipolytic bacteria from Thai fermented foods. Malaysian Journal of Microbiology 11(3): 231-239.
Probst, A.J., C. Hertel, L. Richter, L. Wassill, W. Ludwig and W.P. Hammes. 1998. Staphylococcus condimenti sp. nov., from soy sauce mash, and Staphylococcus carnosus (Schleifer and Fischer 1982) subsp. utilis subsp. nov. International Journal of Systematic Bacteriology 48(3): 651-658.
Rajendran, A., A. Palanisamy and V. Thangavelu. 2009. Lipase catalyzed ester synthesis for food processing industries. Brazilian Archives of Biology and Technology 52(1): 207-219.
Rohman, A., K. Triyana, S. Sismindari and Y. Erwanto. 2012. Differentiation of lard and other animal fats based on triacylglycerols composition and principal component analysis. International Food Research Journal 19(2): 475-479.
Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.
Sakinç, T., B. Kleine and S.G. Gatermann. 2007. Biochemical characterization of the surface-associated lipase of Staphylococcus saprophyticus. FEMS Microbiology Letters 274(2): 335-341.
Sambanthamurthi, R., K. Sundram and Y.A. Tan. 2000. Chemistry and biochemistry of palm oil. Progress in Lipid Research 39: 507-558.
Sayari, A., N. Agrebi, S. Jaoua and Y. Gargouri. 2001. Biochemical and molecular characterization of Staphylococcus simulans lipase. Biochimie 83(9): 863-871.
Schleifer, K.H. and J.A. Bell. 2009. Staphylococcaceae family nov. In: Bergey’s Manual of Systemic Bacteriology, Vol. 3 (eds. P. De Vos, G.M. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A. Rainey, K.H. Schleifer and W.B. Whitman), pp. 392-433. Springer, New York, USA.
Sharma, D., B. Sharma and A.K. Shukla. 2011. Biotechnological approach of microbial lipase: A review. Biotechnology 10(1): 23-40.
Søndergaard, A.K. and L.H. Stahnke. 2002. Growth and aroma production by Staphylococcus xylosus, S. carnosus and S. equorum-A comparative study in model systems. International Journal of Food Microbiology 75(1-2): 99-109.
Talon, R. and M.C. Montel. 1997. Hydrolysis of esters by staphylococci. International Journal of Food Microbiology 36(2-3): 207-214.
Tamura, K., G. Stecher, D. Peterson, A. Filipskim and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725-2729.
Tanasupawat, S. and W. Vissessanguan. 2014. Fish fermentation. In: Seafood Processing: Technology, Quality and Safety, 1st ed. (ed. I.S. Boziaris), pp. 177-207. John Wiley and Sons, Ltd., West Sussex, UK.
Tanasupawat, S., S. Okada and K. Komagata. 1998. Lactic acid bacteria found in fermented fish in Thailand. Journal of General and Applied Microbiology 44: 193-200.
Tanasupawat, S., Y. Hashimoto, T. Ezaki, M. Kozaki and K. Komagata. 1991. Identification of Staphylococcus carnosus strains from fermented fish and soy sauce mash. Journal of General and Applied Microbiology 37: 479-494.
Tanasupawat, S., Y. Hashimoto, T. Ezaki, M. Kozaki and K. Komagata. 1992. Staphylococcus piscifermentans sp. nov., from fermented fish in Thailand. International Journal of Systematic Bacteriology 42: 577-581.
Thompson, J.D., T. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. CLUSTAL_X windows interface: Flexible strategies for multiple sequnce alignment aided by quaility analysis tools. Nucleic Acids Research 15: 4876-4882.
Udomsil, N., S. Rodtong, Y.J. Choi, Y. Hua and J. Yongsawatdigul. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. Journal of Agricultural and Food Chemistry 59: 8401-8408.
Yiamsombut, S., P. Kanchanasin, W. Phongsopitanun, N. Kuncharoen, A. Savarajara, W. Shi, L. Wu, J. Ma and S. Tanasupawat. 2022. Allobacillus salarius sp. nov., and Allobacillus saliphilus sp. nov., isolated from shrimp paste (ka-pi) in Thailand. Archives of Microbiology 204(1): 71. DOI: 10.1007/s00203-021-02694-9.
Yokoi, K., A. Fujii, M. Kondo, S. Kuzuwa, S. Kagaya, A. Yamakawa, A. Taketo and K.I.
Kodaira. 2012. Molecular properties and extracellular processing of the lipase of Staphylococcus warneri M. Journal of Molecular Microbiology and Biotechnology 22(3): 167-176.
Yongsawatdigul, J., S. Rodtong, and N. Raksakulthai. 2007. Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. Journal of Food Science 72(9): 382-390.
Yoon, S.H., S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo and J. Chun. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology 67: 1613-1617.