Photosynthetic Electron Transport in Seeds of a Tropical Seagrass Enhalus koenigii Rich.

Main Article Content

Raymond James Ritchie
Suhailar Sma-Air

Abstract

Enhalus koenigii Rich. (Hydrocharitaceae, Vallisnerioideae) is a widespread monospecific seagrass of the Indian Ocean and West Pacific. The seeds are photosynthetic, an important consideration in their likelihood of successful germination, but their level of photosynthetic activity is not documented. We characterized the photosynthesis and respiration of E. koenigii seeds. Chlorophyll a content of E. koenigii seeds considerably varied, with an average from 13.98±1.25 µg·Chl a·seed-1 or 18.6±2.17 µg Chl a·g-1 FW, while Chl a content of the cone-shaped top part of the seed was 66.5±7.31 mg Chl a·m-2 with Chl b/a ≈ 0.4171±0.0188. Photosynthetic Electron Transport Rates (ETR) of E. koenigii seeds were measured using PAM (Pulse Amplitude Modulation) Fluorescence Technology and the Waiting-in-Line model was used to fit the rapid light curves. The Optimum Irradiance (Eopt) was 366±40.9 µmol photon·m-2·s-1, ETRmax was 230±15.3 (µmol e-·g-1 Chl a·s-1), and photosynthetic efficiency (Alpha, α0) was 1.707±0.222 (e-·g-1 Chl a ·photon-1). Photosynthetic ETR was recalculated as an estimate of Gross Photosynthesis (Pg) based on 4 e- through PSII ≡ 1 O2): Pg-max was ≈ 57.5±3.8 µmol O2·g-1 Chl a·s-1. Respiration rate was measured by O2 electrode in air phase to minimise diffusion difficulties, R = 18.4±3.94 µmol O2·g-1 Chl a·s-1): Pg-max/R ratio at optimum irradiance was ≈ 3.12±0.70, but diurnal net photosynthesis was calculated to be near zero on an intertidal sandflat in a typical diurnal tidal cycle. Photoinhibition of E. koenigii seeds is very severe at sunlight-level irradiances, resulting in photo inhibitory effects >50%.

Article Details

How to Cite
Ritchie, R. J. ., & Sma-Air, S. (2023). Photosynthetic Electron Transport in Seeds of a Tropical Seagrass Enhalus koenigii Rich. Journal of Fisheries and Environment, 47(2), 58–72. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/258022
Section
Research Article

References

Alboresi, A., M. Storti and T. Morosinotto. 2019. Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution. New Phytologist 221: 105–109. DOI: 10.1111/nph.15372.

Ambo-Rappe, R., Y.A. la Nafie, Syafiuddin, S.R. Limbong, N. Asriani, N.T. Handayani and E. Lisdayanti. 2019. Restoration of seagrass Enhalus acoroides using a combination of generative and vegetative techniques. Biodiversitas 20: 3358–3363. DOI: 10.13057/biodiv/d201132.

Ambo-Rappe, R. 2022. The success of seagrass restoration using Enhalus acoroides is correlated with substrate and hydrodynamic conditions. Journal of Environmental Management 310: 114692. DOI: 10.1016/jjenvman.2022.114692.

Apichatmeta, K., C.J. Sudsiri and R.J. Ritchie. 2017. Photosynthesis of oil palm (Elaeis guineensis). Scientia Horticulturae 214: 34–40.

Balestri, E. and C. Lardicci. 2008. First evidence of a massive recruitment event in Posidonia oceanica: spatial variation in first-year seedling abundance on a heterogeneous substrate. Estuarine and Coastal Shelf Science 76: 634–641.

Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170: 489–504.

Brestic, M. and M. Zivcak. 2013. PSII Fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In: Molecular Stress Physiology in Plants (eds. G.R Rout and A.B. Das), pp. 131–187. Springer, Dordrecht, Netherlands.

Celdrán, D. and A. Marín. 2011. Photosynthetic activity of the non-dormant

Posidonia oceanica seed. Marine Biology 158: 853–858. DOI: 10.1007/s00227-010-1612-4.

Celdrán, D. and A Marín. 2013. Seed photosynthesis enhances Posidonia oceanica seedling growth. Ecosphere 4: 149. DOI: 10.1890/ES13-00104.1.

Celdrán, D., J. Lloret, J. Verduin, M. van Keulen and A. Marín. 2015. Linking seed photosynthesis and evolution of the Australian and Mediterranean seagrass

genus Posidonia. PloS One 10: e0130015. DOI: 10.13771/jounralpone.0130015.

Curran, M. 1985. Gas Movements in the Roots of Avicennia marina (Forsk.) Vierh. Functional Plant Biology 12: 97–108. DOI: 10.1071/PP9850097.

den Hartog, C. 1970. The Seagrasses of the World. North Holland, Amsterdam, The Netherlands. 33 pp.

den Hartog, C. and J. Kuo. 2006. Taxonomy and biogeography of seagrasses. In: Seagrasses: Biology, Ecology and Conservation (eds. A.W.D. Larkum, R.J. Orth and C.M. Duarte), pp. 1–23. Springer, Dordrecht, Netherlands.

Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom and R.A. Batiuk. 1993. Assessing water quality with submerged aquatic vegetation. BioScience 42: 86–94.

Figueroa, F.L, R. Conde-Álvarez and I. Gómez. 2003. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light condition. Photosynthesis Research 75: 259–275.

Kirk, J.T.O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, UK. 509 pp.

Kuo, J. and C. den Hartog. 2006. Seagrass morphology, anatomy, and ultrastructure. In: Seagrasses: Biology, Ecology and Conservation (eds. A.W.D. Larkum, R.J. Orth and C.M. Duarte), pp. 51–87. Springer, Dordrecht, Netherlands.

Larkum, A.W.D., R.J. Ritchie and J.A. Raven. 2018. Review: Living off the Sun: chlorophylls, bacteriochlorophylls and rhodopsins. Photosynthetica 56: 11–43. DOI: 10.1007/s11099-018-0792-x.

Liu, S., X. Jiang, Y. Wu, X. Zhang and X. Huang. 2023. Combined effects of temperature and burial on seed germination and seedling growth rates of the tropical seagrass Enhalus acoroides. Journal of Experimental Marine Biology and Ecology 562: 151881. DOI: 10.1016/j.jembe.2023.151881.

McCree, K.J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology 9: 191–216.

Quinnell, R., D. Howell and R.J. Ritchie. 2017. Photosynthesis of an epiphytic resurrection fern Davallia angustata (Wall, ex Hook. & Grev.). Australian Journal of Botany 65: 348–356. DOI: 10.1071/bt16222.

Ralph, P.J. and R. Gademann. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany 82: 222–237. DOI: 10.1016/j.aquabot.2005.02.006.

Rattanachot, E., F.T. Short and A. Prathep. 2016. Enhalus acoroides responses to experimental shoot density reductions in Haad Chao Mai National Park, Trang Province, Thailand. Marine Ecology 37: 411–418. DOI: 10.1111/maec.12294.

Ritchie, R.J. 2008. Fitting light saturation curves measured using PAM fluorometry. Photosynthesis Research 96: 201–215.

Ritchie, R.J. 2010. Modelling photosynthetically active radiation and maximum potential gross photosynthesis. Photosynthetica 48: 596–609.

Ritchie, R.J. and S. Bunthawin. 2010. The use of PAM (Pulse Amplitude Modulation) Fluorometry to measure photosynthesis in pineapple (Ananas comosus [L.] Merr). Tropical Plant Biology 3: 193–203.

Ritchie, R.J. 2012. Photosynthesis in the blue water lily (Nymphaea caerulea Saligny) using PAM fluorometry. International Journal of Plant Sciences 173: 124–136.

Ritchie, R.J. and J.W. Runcie. 2014. A portable Reflectance-Absorptance-Transmittance (RAT) meter for vascular plant leaves. Photosynthetica 52: 614–626. DOI: 10.1007/s11099-014-0069y.

Ritchie, R.J., A.W.D. Larkum and I. Ribas. 2017. Could photosynthesis function on Proxima Centauri b?. International Journal of Astrobiology 2017: 1–30.

Ritchie, R.J., S. Sma-Air and S. Phongphattarawat. 2021a. Using DSMO for chlorophyll spectroscopy. Journal of Applied Phycology 3: 2047–2055. DOI: 10.1007/s10811-021-02438-8.

Ritchie, R.J., S. Sma-Air, N. Limsathapornkul, N. Pranama, M. Nakkeaw, P. Thongchumnum and K. Katchanatree. 2021b. Photosynthesis in the littoral herb Launaea sarmentosa known as Mole Crab in Thailand. Photosynthesis Research 150: 327–341. DOI: 10.1007/s11120-021-00826-2.

Ritchie, R.J. and S. Sma-Air. 2023. Photosynthetic electron transport in a tropical moss Hyophila involuta A. Jaeger. The Bryologist 126: 52–68. DOI: 10.10139/0007-2745-126.1.

Shackira, A.M., N.G. Sarath, K.P. Aswathi, P. Pardha‑Saradhi and J.T. Puthur. 2022. Green seed photosynthesis: What is it? What do we know about it? Where to go? Plant Physiology Reports 27: 573–579. DOI: 10.1007/s40502-022-00695-4.

Soong, K., S.T. Chiu and C.N.N. Chen. 2013. Novel seed adaptations of a monocotyledon seagrass in the wavy sea. PLoS ONE 8(9): e74143. DOI: 10.1371/ journal.pone.0074143.

Terrados, J., A. Marín and D. Celdrán. 2013. Use of Posidonia oceanica seedlings from beach-cast fruits for seagrass planting. Botanica Marina 56: 185–195. DOI: 10.1515/bot-2012-0200.

Walker, D.A., G.A. Kendrick and A.J. McComb. 2006. Decline and recovery of seagrass ecosystems–the dynamics of change. In: Seagrasses: Biology, Ecology and Conservation, Chapter 23 (eds. A.W.D. Larkum, R.J. Orth and C.M. Duarte), pp. 551–565. Springer, Dordrecht, Netherlands.

Zar, J.H. 2014. Biostatistical Analysis, 5th ed. Pearson New International Edition Pearson, Edinburgh Gate, Harlow, UK. 761 pp.