Weight Estimation of Nile Tilapia (Oreochromis niloticus Linn.) Using Image Analysis with and without Fins and Tail
Main Article Content
Abstract
Manual measurement of live fish is stressful and may cause injuries or post-release mortality. Therefore, indirect measurement based on image analysis should be developed. In this study, 150 Nile tilapia samples of three different size ranges (0.5–1 g, 20–30 g, and 40–60 g·fish-1) were collected. Each fish was photographed five times from above while freely swimming, and then weighed. Data from 1,500 images (10 images of each fish were analyzed: 5 for whole body and 5 without fins and tail) were manually segmented to extract the view area (V). Based on an 80–20 split test, the data were divided into two sets: training data (120 fish; 1,200 images) and validation data (30 fish; 300 images). The results showed that fish body weight (W) fitted with V without fins and tail achieved a higher coefficient of determination (r2) than whole body. The linear regression model was chosen as the best fit for W estimation based on r2 (0.922–0.958) and several error analyses: root mean square error (RMSE; 1.02±0.86 g), mean absolute error (MAE; 0.90±0.82 g), mean absolute relative error (MARE; 4.57±4.11%), maximum absolute error (MXAE; 1.76±1.36 g), and maximum relative error (MXRE; 0.12±0.10%). Our results indicated that utilizing a linear model was ideal and easy to apply. Furthermore, there is no suffering or weight loss associated with this procedure, since it is not necessary to harvest the fish as with traditional methods. This suggests that the findings of this study can be utilized in a subsequent phase to estimate the weight of freely moving fish, and we also favor incorporating our results with unmanned aerial vehicles (UAVs). Furthermore, Artificial Intelligence (AI) will be employed to identify models capable of autonomous operation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ansari, F.A., M. Nasr, A. Guldhe, S.K. Gupta, I. Rawat and F. Bux. 2020. Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: a commercial-scale application. Science of The Total Environment 704: 135259. DOI: 10.1016/j.scitotenv.2019.135259.
Azaza, M.S., M.N. Dhraïef and M.M. Kraïem. 2008. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology 33(2): 98–105. DOI: 10.1016/j.jtherbio.2007.05.007.
Balaban, M.O., G.F. Unal Şengör, M. Gil Soriano and E. Guillén Ruiz. 2010a. Using image analysis to predict the weight of Alaskan salmon of different species. Journal of Food Science 75(3): E157–E162. DOI: 10.1111/j.1750-3841.2010.01522.x.
Balaban, M.O., M. Chombeau, D. Cırban and B. Gümüş. 2010b. Prediction of the weight of Alaskan pollock using image analysis. Journal of Food Science 75(8): E552–E556. DOI: 10.1111/j.1750-3841.2010.01813.x.
Bower, S.D., N. Mahesh, R. Raghavan, A.J. Danylchuk and S.J. Cooke. 2019. Sub-lethal responses of mahseer (Tor khudree) to catch-and-release recreational angling. Fisheries Research 211: 231–237. DOI: 10.1016/j.fishres.2018.11.004.
Camargo-dos-Santos, B., C.L. Carlos, J. Favero-Neto, N.P.C. Alves, B.B. Gonçalves and P.C. Giaquinto. 2021. Welfare in Nile Tilapia production: Dorsal fin erection as a visual indicator for insensibility. Animals 11: 3007. DOI: 10.3390/ani11103007.
Casella, E., A. Collin, D. Harris, S. Ferse, S. Bejarano, V. Parravicini, J.L. Hench and A. Rovere. 2017 Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36: 269–275. DOI: 10.1007/s00338-016-1522-0.
Fernandes, A.F.A., E.M. Turra, É.R. de Alvarenga, T.L. Passafaro, F.B. Lopes, G.F.O. Alves, V Singh and G.J.M. Rosa. 2020. Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Computers and Electronics in Agriculture 170: 105274. DOI: 10.1016/j.compag.2020.105274.
Gagne, T.O., K.L. Ovitz, L.P. Griffin, J.W. Brownscombe, S.J. Cooke and A.J. Danylchuk. 2017. Evaluating the consequences of catch-and-release recreational angling on golden dorado (Salminus brasiliensis) in Salta, Argentina. Fisheries Research 186: 625–633. DOI: 10.1016/j.fishres.2016.07.012.
Gümüş, E., A. Yılayaz, M. Kanyılmaz, B. Gümüş and M.O. Balaban. 2021. Evaluation of body weight and color of cultured European catfish (Silurus glanis) and African catfish (Clarias gariepinus) using image analysis. Aquacultural Engineering 93: 102147. DOI: 10.1016/j.aquaeng.2021.102147.
Halttunen, E., A.H. Rikardsen, E.B. Thorstad, T.F. Nӕsje, J.L.A. Jensen and Ø. Aas. 2010. Impact of catch-and-release practices on behavior and mortality of Atlantic salmon (Salmo salar L.) kelts. Fisheries Research 105(3): 141–147. DOI: 10.1016/ j.fishres.2010.03.017.
Hovhannisyan, T., P. Efendyan and M. Vardanyan. 2018. Creation of a digital model of fields with application of DJI phantom 3 drone and the opportunities of its utilization in agriculture. Annals of Agrarian Science 16: 177–180. DOI: 10.1016/j.aasci.2018.03.006.
Jongjaraunsuk, R. and W. Taparhudee. 2021. Weight estimation of Asian sea bass (Lates calcarifer) Comparing whole body with and without fins using computer vision technique. Walailak Journal of Science and Technology 18(10): 9495. DOI: 10.48048/wjst.2021.9495.
Jongjaraunsuk, R. and W. Taparhudee. 2022. Weight estimation model for red tilapia (Oreochromis niloticus Linn.) from images. Agriculture and Natural Resources 56 (1): 215-224. DOI: 10.34044/j.anres.2021.56.1.20.
Kolding, J., L. Haug and S. Stefensson. 2008. Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences 65(7): 1413–1424. DOI: 10.1139/F08-059.
Konovalov, D.A., A. Saleh, J.A. Domingos, R.D. White and D.R. Jerry. 2018. Estimating mass of harvested Asian seabass Lates calcarifer from images. World Journal of Engineering and Technology 6: 15–23. DOI: 10.4236/wjet.2018.63B003.
Maule, A.G., R.A. Tripp, S.L. Kaattari and C.B. Schreck. 1989. Stress alters immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). The Journal of Endocrinology 120(1): 135–142. DOI: 10.1677/joe.0.1200135.
McLean, M.F., M.K. Litvak, S.J. Cooke, K.C. Hanson, D.A. Patterson, S.G. Hinch and G.T. Crossin. 2019. Immediate physiological and behavioural response from catch-and-release of wild white sturgeon (Acipenser transmontanus Richardson, 1836). Fisheries Research 214: 65–75. DOI: 10.1016/j.fishres.2019.02.002.
Miranda, J.M. and M. Romero. 2017. A prototype to measure rainbow trout's length using image processing. Aquacultural Engineering 76: 41–49. DOI: 10.1016/j.aquaeng.2017.01.003.
Murugan, D., A. Garg and D. Singh. 2017. Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(12): 5322–5328. DOI: 10.1109/JSTARS.2017.2746185.
Pickering, A.D. and P. Christie. 1981. Changes in the concentrations of plasma-cortisol and thyroxine during sexual-maturation of the hatchery-reared brown trout, Salmo trutta L. General and Comparative Endocrinology 44(4): 487–496. DOI: 10.1016/0016-6480(81)90337-3.
Raoult, V. and T.F. Gaston. 2018. Rapid biomass and size-frequency estimates of edible jellyfish populations using drones. Fisheries Research 207: 160–164. DOI: 10.1016/j.fishres.2018.06.010.
Sgnaulin, T., E.G. Durigon, S.M. Pinho, T. Jerônimo, D.L. de Alcantara Lopes and M.G.C. Emerenciano. 2020. Nutrition of Genetically Improved Farmed Tilapia (GIFT) in biofloc technology system: Optimization of digestible protein and digestible energy levels during nursery phase. Aquaculture 521: 734998. DOI: 10.1016/j.aquaculture.2020.734998.
Silva, T.S.D.C., L.D.d. Santos, L.C.R.d. Silva, M. Michelato, V.R.B. Furuya and W.M. Furuya. 2015. Length-weight relationship and prediction equations of body composition for growing-finishing cage-farmed Nile tilapia. Revista Brasileira de Zootecnia 44(4): 133–137. DOI: 10.1590/s1806-92902015000400001.
Stålhammar, M., R. Linderfalk, C. Brönmark, R. Arlinghaus and P.A. Nilsson. 2012. The impact of catch-and-release on the foraging behaviour of pike (Esox lucius) when released alone or into groups. Fisheries Research 125: 51–56. DOI: 10.1016/j.fishres.2012.01.017.
Stolze, N., C. Bader, C. Henning, J. Mastin, A.E. Holmes and A.L. Sutlief. 2019. Automated image analysis with ImageJ of yeast colony forming units from cannabis flowers. The Journal of Microbiological Methods 164: 105681. DOI: 10.1016/j.mimet.2019.105681.
Taparhudee W., R. Jongjaraunsuk, S. Nimitkul and W. Mathurossuwan. 2023. Application of unmanned aerial vehicle (UAV) with area image analysis of red tilapia weight estimation in river-based cage culture. Journal of Fisheries and Environment 47(1): 119-131.
Torisawa S., M. Kadota, K. Komeyama, K. Suzuki and T. Takagi. 2011. A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus orientalis, cultured in a net cage. Aquatic Living Resources 24(2): 107–112. DOI: 10.1051/alr/2011133.
Tran-Duy, A., A.A. van Dam and J.W. Schrama. 2012. Feed intake, growth and metabolism of Nile tilapia (Oreochromis niloticus) in relation to dissolved oxygen concentration. Aquaculture Research 43(5): 730-744. DOI: 10.1111/j.1365-2109.2011.02882.x.
Viazzi, S., S. Van Hoestenberghe, B.M. Goddeeris and D. Berckmans. 2015. Automatic mass estimation of Jade perch Scortum barcoo by computer vision. Aquacultural Engineering 64: 42–48. DOI: 10.1016/j.aquaeng.2014.11.003.
Zion, B. 2012. The use of computer vision technologies in aquaculture – A review. Computers and Electronics in Agriculture 88: 125–132. DOI: 10.1016/j.compag.2012.07.010.