Application of Unmanned Aerial Vehicle (UAV) with Area Image Analysis of Red Tilapia Weight Estimation in River-Based Cage Culture
Main Article Content
Abstract
Traditional fish weight measurement is time-consuming, labor-intensive, and can stress the fish. Image analysis has been applied to solve these problems, but mostly for small areas. In this study, an unmanned aerial vehicle (UAV; Phantom 4 model PRO V 2.0) combined with image analysis was used to obtain wider area images and evaluate the weight of red tilapia in a fish cage farm. The study was divided into three parts to assess 1) appropriate flight for UAV image analysis, 2) optimal timing for UAV photography, and 3) accuracy of UAV image analysis for weight estimation. Results showed that an altitude of 7 m was suitable to clearly distinguish the fish using the feature extraction technique. A morning flight between 6:30 a.m. and 7:30 a.m. was the best time for photography, with low sun glare and absence of strong winds, and when most fish swam near the water surface. Moreover, this technique had an accuracy of 91.93±1.21% for weight estimation compared with the traditional method. Based on the findings of this study, it is possible to conclude that this technique has the potential to replace the traditional method. Moreover, it is the first step in developing a monitoring tool to determine the weight of fish swimming freely.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
American Public Health Association (APHA). 2005. Standard Methods of the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, D.C., USA. 541 pp.
Ansari, F.A., M. Nasr, A. Guldhe, S.K. Gupta, I. Rawat and F. Bux. 2020. Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: A commercial-scale application. Science of The Total Environment 704: 135259. DOI: 10.1016/j.scitotenv.2019.135259.
Azaza, M.S., M.N. Dhraïef and M.M. Kraïem. 2008. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology 33(2): 98–105. DOI: 10.1016/j.jtherbio.2007.05.007.
Balaban, M.O., G.F. Unal Şengör, M. Gil Soriano and E. Guillén Ruiz. 2010a. Using image analysis to predict the weight of Alaskan salmon of different species. Journal of Food Science 75(3): E157–E162. DOI: 10.1111/j.1750-3841.2010.01522.x.
Balaban, M.O., M. Chombeau, D. Cırban and B. Gümüş. 2010b. Prediction of the weight of Alaskan pollock using image analysis. Journal of Food Science 75(8): E552–E556. DOI: 10.1111/j.1750-3841.2010.01813.x.
Bevan, E., S. Whiting, T. Tucker, M. Guinea, A. Raith and R. Douglas. 2018. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS One 13(3): e0194460. DOI: 10.1371/journal.pone.0194460.
Boyd, C.E. 1982. Water quality management for pond fish culture. Elsevier Scientific Publishing Company. Amsterdam, the Netherlands. 318 pp.
Casella, E., A. Collin, D. Harris, S. Ferse, S. Bejarano, V. Parravicini, J.L. Hench and A. Rovere. 2016. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36: 269–275. DOI: 10.1007/s00338-016-1522-0.
Cheng, K.H., S.N. Chan and J.H.W. Lee. 2020. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs). Marine Pollution Bulletin 152: 110889. DOI: 10.1016/j.marpolbul.2020.110889.
Fernandes, A.F.A., E.M. Turra, É.R. de Alvarenga, T.L. Passafaro, F.B. Lopes, G.F.O. Alves, V. Singh and G.J.M. Rosa. 2020. Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Computers and Electronics in Agriculture 170: 105274. DOI: 10.1016/j.compag.2020.105274.
Fong, V., S.L. Hoffmann and J.H. Pate. 2022. Using drones to assess volitional swimming kinematics of manta ray behaviors in the wild. Drones 6(5): 111. DOI: 10.3390/drones6050111.
Gümüş, B., M.O. Balaban and M. Ünlüsayın. 2011. Machine vision application to aquatic foods: A review. Turkish Journal of Fisheries and Aquatic Sciences 11: 171–181. DOI: 10.4194/trjfas.2011.0124.
Gümüş, E., A. Yılayaz, M. Kanyılmaz, B. Gümüş and M.O. Balaban. 2021. Evaluation of body weight and color of cultured European catfish (Silurus glanis) and African catfish (Clarias gariepinus) using image analysis. Aquacultural Engineering 93: 102147. DOI: 10.1016/j.aquaeng.2021.102147.
Hodgson, A., N. Kelly and D. Peel. 2013. Unmanned aerial vehicles (UAVs) for surveying marine fauna: A dugong case study. PLoS One 8(11): e79556. DOI: 10.1371/journal.pone.0079556.
Houghton, J.D.R., T.K. Doyle, J. Davenport and G.C. Hays. 2006. Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air. Marine Ecology Progress Series 314: 159–170. DOI: 10.3354/meps314159.
Igathinathane, C., L.O. Pordesimo, E.P. Columbus, W.D. Batchelor and S.R. Methuku. 2008. Shape identification and particles size distribution from basic shape parameters using ImageJ. Computers and Electronics in Agriculture 63(2): 168–182. DOI: 10.1016/j.compag.2008.02.007.
Jongjaraunsuk, R. and W. Taparhudee. 2021. Weight estimation of Asian sea bass (Lates Calcarifer) comparing whole body with and without fins using computer vision technique. Walailak Journal of Science and Technology 18(10): 9495. DOI: 10.48048/wjst.2021.9495.
Kolding, J., L. Haug and S. Stefensson. 2008. Effect of ambient oxygen on growth and reproduction in Nile tilapia (Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Sciences 65(7): 1413–1424. DOI: 10.1139/F08-059.
Konovalov, D.A., A. Saleh, J.A. Domingos, R.D. White and D.R. Jerry. 2018. Estimating mass of harvested Asian seabass Lates calcarifer from images. World Journal of Engineering and Technology 6: 15–23. DOI: 10.4236/wjet.2018.63B003.
Leal, J.F., M.G.P.M.S. Neves, E.B.H. Santos and V.I. Esteves. 2018. Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Aquaculture 10(2): 281–295. DOI: 10.1111/raq.12160.
Lo, H.S., L.C. Wong, S.H. Kwok, Y.K. Lee, B.H.K. Po, C.Y. Wong, N.F.Y. Tam and S.G. Cheung. 2020. Field test of beach litter assessment by commercial aerial drone. Marine Pollution Bulletin 151: 110823. DOI: 10.1016/j.marpolbul.2019.110823.
Misimi, E., U. Erikson, H. Digre, A. Skavhaug and J.R. Mathiassen. 2008. Computer vision-based evaluation of pre- and postrigor changes in size and shape of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem handling stress. Journal of Food Science 73(2): E57–E68. DOI: 10.1111/j.1750-3841.2007.00626.x.
Pongthana, N., N.H. Nguyen and R.W. Ponzoni. 2010. Comparative performance of four red tilapia strains and their crosses in fresh- and saline water environments. Aquaculture 308: S109–S114. DOI: 10.1016/j.aquaculture.2010.07.033.
Raoult, V. and T.F. Gaston. 2018. Rapid biomass and size-frequency estimates of edible jellyfish populations using drones. Fisheries Research 207: 160–164. DOI: 10.1016/j.fishres.2018.06.010.
Riche, M., D.I. Haley, M. Oetker, S. Garbrecht and D.L. Garling. 2004. Effect of feeding frequency on gastric evacuation and the return of appetite in tilapia Oreochromis niloticus (L.). Aquaculture 234(1–4): 657–673. DOI: 10.1016/j.aquaculture.2003.12.012.
Schaub, J., B.P.V. Hunt, E.A. Pakhomov, K. Holmes, Y. Lu and L. Quayle. 2018. Using unmanned aerial vehicles (UAVs) to measure jellyfish aggregations. Marine Ecology Progress Series 591: 29–36. DOI: 10.3354/meps12414.
Seifert, E., S. Seifert, H. Vogt, D. Drew, J. Van Aardt, A. Kunneke and T. Seifert. 2019. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sensing 11(10): 1252. DOI: 10.3390/rs11101252.
Sgnaulin, T., E.G. Durigon, S.M. Pinho, T. Jerônimo, D.L. de Alcantara Lopes and M.G.C. Emerenciano. 2020. Nutrition of genetically improved farmed tilapia (GIFT) in biofloc technology system: Optimization of digestible protein and digestible energy levels during nursery phase. Aquaculture 521: 734998. DOI: 10.1016/j.aquaculture.2020.734998.
Silva, T.S.D.C., L.D.d. Santos, L.C.R.d. Silva, M. Michelato, V.R.B. Furuya and W.M. Furuya. 2015. Length-weight relationship and prediction equations of body composition for growing-finishing cage-farmed Nile tilapia. Revista Brasileira de Zootecnia 44(4): 133–137. DOI: 10.1590/s1806-92902015000400001.
Sriyasak, P., C. Chitmanat, N. Whangchai, J. Promya and L. Lebel. 2015. Effect of water de-stratification on dissolved oxygen and ammonia in tilapia ponds in Northern Thailand. International Aquatic Research 7: 287–290. DOI: 10.1007/s40071-015-0113-y.
Torisawa, S., M. Kadota, K. Komeyama, K. Suzuki and T. Takagi. 2011. A digital stereo-video camera system for three-dimensional monitoring of free-swimming Pacific bluefin tuna, Thunnus orientalis, cultured in a net cage. Aquatic Living Resources 24(2): 107–112. DOI: 10.1051/alr/2011133.
Tran-Duy, A., A.A. van Dam and J.W. Schrama. 2012. Feed intake, growth and metabolism of Nile tilapia (Oreochromis niloticus) in relation to dissolved oxygen concentration. Aquaculture Research 43(5): 730–744. DOI: 10.1111/j.1365-2109.2011.02882.x.
Viazzi, S., S. Van Hoestenberghe, B.M. Goddeeris and D. Berckmans. 2015. Automatic mass estimation of Jade perch Scortum barcoo by computer vision. Aquacultural Engineering 64: 42–48. DOI: 10.1016/j.aquaeng.2014.11.003.
Wallace, L., A. Lucieer, C. Watson and D. Turner. 2012. Development of a UAV-LiDAR system with application to forest inventory. Remote Sensing 4(6): 1519–1543. DOI: 10.3390/rs4061519.