Light Quality Influences on Early Developmental Stage of a Tropical Seagrass, Enhalus acoroides: Growth and Physiological Responses

Main Article Content

Muhammad Heemboo
Chongdee Thammakhet‐Buranachai
Fonthip Makkliang
Pimchanok Buapet

Abstract

The impact of light quality on the early development of the seagrass Enhalus acoroides remains poorly understood. To bridge this gap in knowledge, we conducted aquarium-based experiments to assess the growth and physiological responses of E. acoroides seeds from germination to seedling development over 15 days. We subjected the seeds to different light conditions, including darkness, white light (λ = 460−630 nm), red light (peak λ = 630 nm), and blue light (peak λ = 460 nm), all at an intensity of 100 μmol photons·m-2·s-1. Our results revealed unique responses in darkness and red light. Darkness stimulated shoot and root elongation, while red light resulted in the lowest shoot/root ratio. Seedlings grown in darkness displayed suppressed photosynthetic activity, as evidenced by the lowest maximum quantum yield, electron transport rates, and initial slope of the light response curve. These seedlings also had the lowest photosynthetic pigments and xanthophyll cycle-related attributes. On the other hand, red light promoted high light responses, as indicated by the lowest chlorophyll b/a ratio (an indicator of the size of the light-harvesting antenna) and the highest de-epoxidation state of xanthophyll (an indicator of photoprotective effort). Our findings highlight the significant impact of changes in light quality on the growth and physiological performance of E. acoroides during early development. Interestingly, white light and blue light resulted in similar outcomes. More research is necessary to shed light on the underlying mechanisms driving these responses and the implications for seagrass adaptation to marine environments.

Article Details

How to Cite
Heemboo, M., Thammakhet‐Buranachai, C. ., Makkliang, F. ., & Buapet, P. (2023). Light Quality Influences on Early Developmental Stage of a Tropical Seagrass, Enhalus acoroides: Growth and Physiological Responses. Journal of Fisheries and Environment, 47(2), 33–46. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/258668
Section
Research Article

References

Artika, S.R., R. Ambo-Rappe, M. Teichberg, A. Moreira-Saporiti and I.G. Viana. 2020. Morphological and physiological responses of Enhalus acoroides seedlings under varying temperature and nutrient treatment. Frontiers in Marine Science 7: 325. DOI: 10.3389/fmars.2020.00325.

Buapet, P., F. Makkliang and C. Thammakhet-Buranachai. 2017. Photosynthetic activity and photoprotection in green and red leaves of the seagrasses, Halophila ovalis and Cymodocea rotundata: implications for the photoprotective role of anthocyanin. Marine Biology 164: 182. DOI: 10.1007/s00227-017-3215-9.

Buapet, P., L.J.Q. Low and P.A. Todd. 2020. Differing photosynthetic responses to excess irradiance in the two coexisting seagrasses, Halophila ovalis and Halophila decipiens: Chloroplast avoidance movement, chlorophyll fluorescence, and leaf optical properties. Aquatic Botany 166: 103268. DOI: 10.1016/j.aquabot.2020.103268.

Celdran, D. and A. Marín. 2013. Seed photosynthesis enhances Posidonia oceanica seedling growth. Ecosphere 12: 1–11. DOI:10.1890/ES13-00104.1.

Celdran, D. 2017. Photosynthetic activity detected in the seed epidermis of Thalassia testudinum. Aquatic Botany 136: 39–42. DOI: 10.1016/j.aquabot.2016.09.004.

Chory, J., M. Chatterjee, R.K. Cook, T. Elich, C. Fankhauser, J. Li, P. Nagpal, M. Neff, A. Pepper, D. Poole, J. Reed and V. Vitart. 1996. From seed germination to flowering, light controls plant development via the pigment phytochrome. Proceedings of the National Academy of Sciences 93(22): 12066–12071. DOI: 10.1073/pnas.93.22.12066.

Collier, C.J., P.S. Lavery, R.J. Masini and P.J. Ralph. 2007. Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Marine Ecology Progress Series 337: 103–115. DOI: 10.3354/meps337103.

Cussioli, M.C., D. Seeger, D.R. Pratt, K.R. Bryan, K. Bischof, W.P. de Lange and C.A. Pilditch. 2020. Spectral differences in the underwater light regime caused by sediment types in New Zealand estuaries: implications for seagrass photosynthesis. Geo-Marine Letters 40: 217–225. DOI: 10.1007/s00367-020-00640-0.

Dattolo, E., M. Ruocco, C. Brunet, M. Lorenti, C. Lauritano, D. D'esposito, P. De Luca, R. Sanges, S. Mazzuca and G. Procaccini. 2014. Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. Marine Environmental Research 101: 225–236. DOI: 10.1016/j.marenvres.2014.07.010.

Demmig-Adams, B., C.M. Cohu, O. Muller and W.W. Adams. 2012. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynthesis Research 113: 75–88. DOI: 10.1007/s11120-012-9761-6.

Demotes-Mainard, S., T. Péron, A. Corot, J. Bertheloot, J. Le Gourrierec, S. Pelleschi-Travier, S.L. Crespel, P. Morel, L. Huché-Thélier, R. Boumaza, A. Vian, V. Guérin, N. Leduc and S. Sakr. 2016. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany 121: 4–21. DOI: 10.1016/j.envexpbot.2015.05.010.

Duan, L., M.Á. Ruiz-Sola, A. Couso, N. Veciana and E. Monte. 2020. Red and blue light differentially impact retrograde signalling and photoprotection in rice. Philosophical Transactions of the Royal Society B: Biological Sciences 375(1801): 20190402. DOI: 10.1098/rstb.2019.0402.

Garmash, E.V., O.V. Dymova, R.V. Malyshev, S.N. Plyusnina and T.K. Golovko. 2013. Developmental changes in energy dissipation in etiolated wheat seedlings during the greening process. Photosynthetica 51: 497–508. DOI: 10.1007/s11099-013-0044-z.

Givnish, T.J. 1988. Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology 15(2): 63–92. DOI: 10.1071/PP9880063.

Hamdani, S., N. Khan, S. Perveen, M. Qu, J. Jiang and X.G. Zhu. 2019. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. Photosynthesis Research 139: 107–121. DOI: 10.1007/s11120-018-0589-6.

Inoue, S.I. and T. Kinoshita. 2017. Blue light regulation of stomatal opening and the plasma membrane H1-ATPase. Plant Physiology 174: 531–538. DOI: 10.1104/pp.17.00166.

Jedynak, P., K.F. Trzebuniak, M. Chowaniec, P. Zgłobicki, A.K. Banaś and B. Mysliwa-Kurdziel. 2022. Dynamics of etiolation monitored by seedling morphology, carotenoid composition, antioxidant level, and photoactivity of protochlorophyllide in Arabidopsis thaliana. Frontiers in Plant Science 12: 772727. DOI: 10.3389/fpls.2021.772727.

Kagawa, T. and M. Wada. 2002. Blue light-induced chloroplast relocation. Plant and Cell Physiology 43(4): 367–371. DOI: 10.1093/pcp/pcf049.

Kausik, S.B. 1940. A contribution to the embryology of Enalus acoroides (L. fil.), Steud. Proceedings Indian Academy of Sciences 1940: 83–99.

Kilminster, K., K. McMahon, M. Waycott, G.A. Kendrick, P. Scanes, L. McKenzie, K.R. O'Brien, M. Lyons, A. Ferguson, P. Maxwell, T. Glasby and J. Udy. 2015. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Science of the Total Environment 534: 97–109. DOI: 10.1016/j.scitotenv.2015.04.061.

Kirk, J.T. 2011. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed. Cambridge University Press, New York, USA. 662 pp.

Kongrueang, P., P. Buapet and P. Roongsattham. 2018. Physiological responses of Enhalus acoroides to osmotic stress. Botanica Marina 61(3): 257–267. DOI: 10.1515/bot-2017-0108.

Lepeduš, H., M. Jakopec, J. Antunović Dunić, G. Krizmanić, S. Osmanović and V. Cesar. 2017. Temperature-dependent chlorophyll accumulation and photosystem II assembly during etioplast to chloroplast transition in sunflower cotyledons. Acta Botanica Croatica 76(1): 107–110. DOI: 10.1515/botcro-2016-0043.

Li, Z., Q. Chen, Y. Xin, Z. Mei, A. Gao, W. Liu, L. Yu, N.X. Chen, Z. Chen and N. Wang. 2021. Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights. BMC Plant Biology 21(1): 1–14. DOI: 10.1186/s12870-021-03262-5.

Lichtenthaler, H.K. and A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591–592.

Lin, C. 2000. Plant blue-light receptors. Trends in Plant Science 5(8): 337–342. DOI: 10.1016/S1360-1385(00)01687-3.

Liu, S., Z. Jiang, Y. Wu, X. Zhang and X. Huang. 2023. Combined effects of temperature and burial on seed germination and seedling growth rates of the tropical seagrass Enhalus acoroides. Journal of Experimental Marine Biology and Ecology 562: 151881. DOI: 10.1016/j.jembe.2023.151881.

Llorente, B., J.F. Martinez-Garcia, C. Stange and M. Rodriguez-Concepcion. 2017. Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Current Opinion in Plant Biology 37: 49–55. DOI: 10.1016/j.pbi.2017.03.011.

Low, V.H. 1971. Effects of light and darkness on the growth of peas. Australian Journal of Biological Sciences 24(2): 187–196. DOI: 10.1071/BI9710187.

Ma, M., M. Zhong, Q. Zhang, W. Zhao, M. Wang and C. Luo. 2021. Phylogenetic implications and functional disparity in the Chalcone synthase gene family of common Seagrass Zostera marina. Frontiers in Marine Science 8: 760902. DOI: 10.3389/fmars.2021.760902.

Nordlund, L.M., E.W. Koch, E.B. Barbier and J.C. Creed. 2016. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One 11(10): e0163091. DOI: 10.1371/journal.pone.0163091.

Ohnishi, N., S.I. Allakhverdiev, S. Takahashi, S. Higashi, M. Watanabe, Y. Nishiyama and N. Murata. 2005. Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44(23): 8494–8499. DOI: 10.1021/bi047518q.

Olesen, B., S. Enríquez, C.M. Duarte and K. Sand-Jensen. 2002. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Marine Ecology Progress Series 236: 89–97. DOI: 10.3354/meps236089.

Olsen, J.L., P. Rouzé, B. Verhelst, Y.C. Lin, T. Bayer et al. 2016. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530(7590): 331–335. DOI: 10.1038/nature16548.

Ort, D.R., X. Zhu and A. Melis. 2011. Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology 155(1): 79–85. DOI: 10.1104/pp.110.165886.

Phandee, S. and P. Buapet. 2018. Photosynthetic and antioxidant responses of the tropical intertidal seagrasses Halophila ovalis and Thalassia hemprichii to moderate and high irradiances. Botanica Marina 61(3): 247–256. DOI: 10.1515/bot-2017-0084.

Platt, T., C.L. Gallegos and W.G. Harrison. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

Porra, R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149–156. DOI: 10.1023/A:1020470224740.

Procaccini, G., M. Ruocco, L. Marín-Guirao, E. Dattolo, C. Brunet et al. 2017. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Scientific Reports 7(1): 1–15. DOI: 10.1038/srep42890.

Ralph, P.J. 1999. Photosynthetic response of Halophila ovalis (R. Br.) Hook. f. to combined environmental stress. Aquatic Botany 65(1–4): 83–96. DOI: 10.1016/S0304-3770(99)00033-9.

Ralph, P.J. and R. Gademann. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany 82(3): 222–237. DOI: 10.1016/j.aquabot. 2005.02.006

Rehman, M., S. Fahad, M.H. Saleem, M. Hafeez, M. Rahman, F. Liu and G. Deng. 2020. Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica 58(4): 922–931. DOI: 10.32615/ps.2020.040.

Saewong, C., S. Soonthornkalump and P. Buapet. 2022. Combined effects of high irradiance and temperature on the photosynthetic and antioxidant responses of Thalassia hemprichii and Halophila ovalis. Botanica Marina 65(5): 325–335. DOI: 10.1515/bot-2022-0014.

Samuolienė, G., A. Viršilė, J. Miliauskienė, P.J. Haimi, K. Laužikė, A. Brazaitytė and P. Duchovskis. 2021. The physiological response of lettuce to red and blue light dynamics over different photoperiods. Frontiers in Plant Science 11: 610174. DOI: 10.3389/fpls.2020.610174.

Sandoval-Gil, J.M., J.M. Ruiz, L. Marín-Guirao, J. Bernardeau-Esteller and J.L. Sánchez-Lizaso. 2014. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress. Marine Environmental Research 95: 39–61. DOI: 10.1016/j.marenvres.2013.12.011.

Shengxin, C., L. Chunxia, Y. Xuyang, C. Song, J. Xuelei, L. Xiaoying, X. Zhigang and G. Rongzhan. 2016. Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage. Frontiers in Plant Science 7: 1144. DOI: 10.3389/fpls.2016.01144.

Shengxin, C., C. Pu, R.Z. Guan, M. Pu and Z.G. Xu. 2018. Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage. Journal of Zhejiang University Science B: Biomedicine and Biotechnology 19(8): 581. DOI: 10.1631/jzus.B1700408.

Short, F., T. Carruthers, W. Dennison and M. Waycott. 2007. Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology 350(1–2): 3–20. DOI: 10.1016/j.jembe.2007.06.012.

Soong, K., S.T. Chiu and C.N.N. Chen. 2013. Novel seed adaptations of a monocotyledon seagrass in the wavy sea. PLoS One 8(9): e74143. DOI: 10.1371/journal.pone. 0074143.

Spaninks, K., J. van Lieshout, W. van Ieperen and R. Offringa. 2020. Regulation of early plant development by red and blue light: a comparative analysis between Arabidopsis thaliana and Solanum lycopersicum. Frontiers in Plant Science 11: 599982. DOI: 10.3389/fpls.2020.599982.

Statton, J., K. McMahon, P. Lavery and G.A. Kendrick. 2018. Determining light stress responses for a tropical multi-species seagrass assemblage. Marine Pollution Bulletin 128: 508–518. DOI: 10.1016/j.marpolbul.2018.01.060.

Strydom, S., K. McMahon and P.S. Lavery. 2017a. Response of the seagrass Halophila ovalis to altered light quality in a simulated dredge plume. Marine Pollution Bulletin 121(1–2): 323–330. DOI: 10.1016/j.marpolbul.2017.05.060.

Strydom, S., K. McMahon, G.A. Kendrick, J. Statton and P.S. Lavery. 2017b. Seagrass Halophila ovalis is affected by light quality across different life history stages. Marine Ecology Progress Series 572: 103–116. DOI: 10.3354/meps12105.

Strydom, S., K.M. McMahon, G.A. Kendrick, J. Statton and P.S. Lavery. 2018. Short-term responses of Posidonia australis to changes in light quality. Frontiers in Plant Science 8: 2224. DOI: 10.3389/fpls.2017.02224.

Terashima, I. and K. Hikosaka. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell and Environment 18(10): 1111–1128. DOI: 10.1111/j.1365-3040.1995.tb00623.x.

Terrados, J., C.M. Duarte, L. Kamp-Nielsen, N.S. Agawin, E. Gacia, D. Lacap, M.D. Fortes, J. Borum, M. Lubanski and T.M. Greve. 1999. Are seagrass growth and survival constrained by the reducing conditions of the sediment. Aquatic Botany 65: 175–197. DOI: 10.1016/S0304-3770(99)00039-X.

Terrados, J., M. Grau-Castella, D. Piñol-Santiñà and P. Riera-Fernández. 2006. Biomass and primary production of a 8–11 m depth meadow versus <3 m depth meadows of the seagrass Cymodocea nodosa (Ucria) Ascherson. Aquatic Botany 84(4): 324–332. DOI: 10.1016/j.aquabot.2005.12.004.

Von Arnim, A. and X.W. Deng. 1996. Light control of seedling development. Annual Review of Plant Biology 47(1): 215–243. DOI: 10.1146/annurev.arplant.47.1.215.

Wang, L., D. Leister and T. Kleine. 2020. Chloroplast development and genomes uncoupled signaling are independent of the RNA-directed DNA methylation pathway. Scientific Reports 10(1): 15412. DOI: 10.1038/s41598-020-71907-w.

Wutiruk, T., P. Buapet, J. Nopparat, E. Kong, S.M. Yaakub and Y.X. Ow. 2022. Acclimation to low light modifies nitrogen uptake in Halophila ovalis (R. Brown) JD Hooker. Journal of Experimental Marine Biology and Ecology 549: 151705. DOI: 10.1016/j.jembe.2022.151705.

Yuan, M., Y.Q. Zhao, Z.W. Zhang, Y.E. Chen, C.B. Ding and S. Yuan. 2017. Light regulates transcription of chlorophyll biosynthetic genes during chloroplast biogenesis. Critical Reviews in Plant Sciences 36(1): 35–54. DOI: 10.1080/07352689.2017.1327764.

Zheng, L. and M.C. Van Labeke. 2017. Long-term effects of red-and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Frontiers in Plant Science 8: 917. DOI: 10.3389/fpls.2017.00917.