An Ensemble Learning Technique for Predicting Mortality Rate in Red Tilapia (Oreochromis niloticus Linn.) Fingerlings

Main Article Content

Roongparit Jongjaraunsuk
Wara Taparhudee
Putra Ali Syahbana Matondang

Abstract

Aquaculture has witnessed a gradual transformation owing to advancement in automatic and intelligent technology. Coupled with the power of high-performance computers, these innovations have given rise to machine learning technologies capable of extracting valuable insights from data. Consequently, these technologies are poised to usher smart aquaculture into a new era of efficiency and productivity. This particular study focused on enhancing the predictive accuracy of mortality rates in red tilapia (Oreochromis niloticus Linn.) fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system. To achieve this, the study leveraged a voting-based ensemble learning technique based on the combination of three single predictive algorithms: decision tree, deep learning, and naïve bayes (EL–V (DTDLNB)). The initial phase of the research involved the compilation of a comprehensive dataset encompassing parameters were temperature (°C), dissolved oxygen (mg·L-1), pH, total ammonia nitrogen (mg·L-1), nitrite–nitrogen (mg·L-1), transparency (cm), and alkalinity (mg·L-1) date, month and mortality rate (fish·day-1). Following the collection and cleaning of the dataset, 173 samples with 12 attributes were used in this study. The outcomes of this investigation revealed that the performance of the individual predictive models was eclipsed by the proposed EL–V (DTDLNB) model, boasting an impressive accuracy rate of 90.85%, precision of 84.00%, recall of 77.50%, and AUC of 0.896. These results affirm the potential utility of the proposed model for accurately forecasting the mortality rate of red tilapia fingerling in aquaculture settings, thereby contributing significantly to the optimization of aquaculture practices.

Article Details

How to Cite
Jongjaraunsuk, R., Taparhudee, W., & Matondang, P. A. S. . (2024). An Ensemble Learning Technique for Predicting Mortality Rate in Red Tilapia (Oreochromis niloticus Linn.) Fingerlings. Journal of Fisheries and Environment, 48(1), 37–50. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/260258
Section
Research Article

References

Alfatinah, A., H.J. Chu, Tatas and S.R. Patra. 2023. Fishing Area Prediction Using Scene-Based Ensemble Models. Journal of Marine Science and Engineering 11: 1398. DOI: 10.3390/jmse11071398.

American Public Health Association (APHA). 2005. Standard Methods of the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, D.C., USA. 541 pp.

Azaza, M.S., M.N. Dhraïef and M.M. Kraïem. 2008. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology 33(2): 98–105. DOI: 10.1016/j.jtherbio.2007.05.007.

Bilal, S.F., A.A. Almazroi, S. Bashir, F.H. Khan and A.A. Almazroi. 2022. An ensemble based approach using a combination of clustering and classification algorithms to enhance customer churn prediction in telecom industry. PeerJ Computer Science 8: 8:e854. DOI: 10.7717/peerj-cs.854.

Breiman, L. 2001. Random forests. Machine Learning 45(1): 5–32. DOI: 10.1023/A:1010933404324.

Caruana, R., A. Munson and A. Niculescu-Mizil. 2006. Getting the most out of ensemble Selection. Proceeding of the 6th International Conference on Data Mining (ICDM'06) 2006: 828–833.

Chen, Y., X. Shan, H. Gorfine, F. Dai, Q. Wu, T. Yang, Y. Shi and X. Jin. 2023. Ensemble projections of fish distribution in response to climate changes in the Yellow and Bohai Seas, China. Ecological Indicators 146: 109759. DOI: 10.1016/j.ecolind.2022.109759.

Ekasari, J., D.R. Rivandi, A.P. Firdausi, E.H. Surawidjaja, M. Zairin, P. Bossier and P. De Schryver. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture 441: 72–77. DOI: 10.1016/j.aquaculture.2015.02.019.

El-Sayed, A.F.M. 2019. Environmental requirement. In: Tilapia Culture, 2nd ed. (ed. A.F.M. El-Sayed), pp. 47–67. Academic Press, Massachusetts, USA.

Food and Agriculture Organization of the United Nations (FAO). 2022. The state of world fisheries and aquaculture. https://www.fao.org/3/cc0461en/cc0461en.pdf. Cited 15 Nov 2023.

García-Ríos, L., A. Miranda-Baeza, M.G. Coelho-Emerenciano, J.A. Huerta-Rábago and P. Osuna-Amarillas. 2019. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture 502: 26–31. DOI: 10.1016/j.aquaculture.2018.11.057.

Gladju, J., B.S. Kamalam and A. Kanagaraj. 2022. Applications of data mining and machine learning framework in aquaculture and fisheries: A review. Smart Agricultural Technology 2: 100061. DOI: 10.1016/j.atech.2022.100061.

Goodfellow, I., Y. Bengio, A. Courville and Y. Bengio. 2016. Deep Learning, Volume 1. The MIT Press, Massachusetts, USA. 800 pp.

Hasibuan, S., S. Syafriadiman, N. Aryani, M. Fadhli and M. Hasibuan. 2023. The age and quality of pond bottom soil affect water quality and production of Pangasius hypophthalmus in the tropical environment. Aquaculture and Fisheries 8(3): 296–304. DOI: 10.1016/j.aaf.2021.11.006.

He, H. and E.A. Garcia. 2009. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering 21(9): 1263–1284. DOI: 10.1109/TKDE.2008.239.

Huan, J., H. Li, M. Li and B. Chen. 2020. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Chang Zhou fishery demonstration base, China. Computers and Electronics in Agriculture 175: 105530. DOI: 10.1016/j.compag.2020.105530.

Jardim, E., M. Azevedo, J. Brodziak, E.N. Brooks, K.F. Johnson, N. Klibansky, C.P Millar, C. Minto, I. Mosqueira, R.D.M. Nash, P. Vasilakopoulos and B.K. Wells. 2021. Operationalizing ensemble models for scientific advice to fisheries management. ICES Journal of Marine Science 78(4): 1209–1216. DOI: 10.1093/icesjms/fsab010.

Jongjaraunsuk, R. and W. Taparhudee. 2022. Weight estimation model for red tilapia (Oreochromis niloticus Linn.) from images. Agriculture and Natural Resources 56(1): 215–224. DOI: 10.34044/j.anres.2021.56.1.20.

Khiem, N.M., Y. Takahashi, T. Masumura, G. Kotake, H. Yasuma and N. Kimura. 2023. A machine learning ensemble approach for predicting growth of abalone reared in land-based aquaculture in Hokkaido, Japan. Aquacultural Engineering 103: 102372. DOI: 10.1016/j.aquaeng.2023.102372.

Knudby, A., A. Brenning and E. LeDrew. 2010. New approaches to modelling fish–habitat relationships. Ecological Modelling 221: 503–511. DOI: 10.1016/j.ecolmodel.2009.11.008.

Kotu, V. and B. Deshpande. 2019. Getting started with RapidMiner. In: Data Science Concepts and Practice, 2nd ed. (eds. V. Kotu and B. Deshpande), pp. 491–521. Morgan Kaufmann, Massachusetts, USA.

Kuncheva, L.I. 2004. Combining Pattern Classifiers: Methods and Algorithms. John Wiley and Sons, New Jersey, USA. 350 pp.

LeCun, Y., Y. Bengio and G. Hinton. 2015. Deep learning. Nature 521: 436–444. DOI: 10.1038/nature14539.

Lemaitre, G., F. Nogueira and C.K. Aridas. 2017. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research 18(17): 1–5.

Lewis, D.D. 1998. Naive (Bayes) at forty: The independence assumption in information retrieval. Machine Learning: ECML 98: 4–15. DOI: 10.1007/BFb0026666.

Liakos, K.G., P. Busato, D. Moshou, S. Pearson and D. Bochtis. 2018. Machine learning in agriculture: A review. Sensors (Basel) 18(8): 2674. DOI: 10.3390/s18082674.

Lin ,S., H. Zheng, B. Han, Y. Li, C. Han and W. Li. 2022. Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction. Acta Geotechica 17(4): 1477–1502. DOI: 10.1007/s11440-021-01440-1.

Marcello, B., C. Davide, F. Marco, G. Roberto, M. Leonardo and P. Luca. 2020. An ensemble-learning model for failure rate prediction. Procedia Manufacturing 42: 41–48. DOI: 10.1016/j.promfg.2020.02.022.

Mienye, I.D. and Y. Sun. 2022. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access 10: 99129–99149. DOI: 10.1109/access.2022.3207287.

Podgorelec, V., P. Kokol, B. Stiglic and I. Rozman. 2002. Decision trees: an overview and their use in medicine. Journal of Medical systems 26(5): 445–463. DOI: 1016409317640.

Putra, I., I. Effendi, I. Lukistyowati and U.M. Tang. 2019. Growth and survival rate of red tilapia (Oreochromis sp.) cultivated in the brackish water tank under biofloc system. Advance in Engineering Research 190: 96–99. DOI: 10.2991/iccelst-st-19.2019.19.

Quinlan, J.R. 1986. Induction of decision trees. Machine Learning 1: 81–106. DOI: 10.1007/BF00116251.

Raza, K. 2019. Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule. In: U-Healthcare Monitoring Systems (eds. N. Dey, A.S. Ashour, S.J. Fong and S. Borra), pp. 179–196. Academic Press, Massachusetts, USA.

Rish, I. 2001. An empirical study of the naive Bayes classifier. IJCAI 2001 workshop on empirical methods in artificial intelligence 3(22): 41–46.

Sagi, O. and L. Rokach. 2018. Ensemble learning: a survey. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery 8(4): e1249. DOI: 10.1002/widm.1249.

Schmidhuber, J. 2015. Deep learning in neural networks: An overview. Neural Networks 61: 85–117. DOI: 10.1016/j.neunet.2014.09.003.

Sharma, S. and Y.K. Gupta. 2021. Predictive analysis and survey of COVID-19 using machine learning and big data. Journal of Interdisciplinary Mathematics 24(1): 175–195. DOI: 10.1080/09720502.2020.1833445.

Sun, Y., A.K. Wong and M.S. Kamel. 2009. Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence 23(4): 687–719. DOI: 10.1142/S0218001409007326.

Taparhudee, W., R. Jongjaraunsuk, S. Nimitkul and W. Mathurossuwan. 2023. Application of unmanned aerial vehicle (UAV) with area image analysis of red tilapia weight estimation in river-based cage culture. Journal of Fisheries and Environment 47(1): 119–131.

Zhang, H. 2004. The optimality of naive bayes. Proceeding of the 17th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004) 2004: 12–14.

Zhao, S., S. Zhang, J. Liu, H. Wang, J. Zhu, D. Li and R. Zhao. 2021.Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 540: 736724. DOI: 10.1016/j.aquaculture.2021.736724.

Zhou, Z.H. 2012. Ensemble Methods: Foundations and Algorithms. CRC Press, Florida, USA. 236 pp.