Effects of Sodium Bicarbonate Supplements on Growth Performance and Quality of Marine Microalgal Inoculum Production
Main Article Content
Abstract
The effects of sodium bicarbonate (NaHCO3) supplements (0.05, 0.25, 0.50, 1.0 g·L-¹) in the culture medium were examined on six marine microalgae inocula cultured under laboratory conditions (25±1 °C, 28 psu, 12L:12D, 3,000 Lux light intensity, Conway medium) for 10 days and compared to a control without NaHCO3. The parameters assessed included cell density (CD), specific growth rate (µ), division rate (K), and doubling time (D). The results indicated a positive effect on CD, µ, K, and D for the production of Chaetoceros calcitrans, Thalassiosira weissflogii, Chlorella spp., and Nannochloropsis oculata strains with NaHCO3 additions of 0.25, 1.0, 1.0, and 0.50 g·L-¹, respectively. Conversely, NaHCO3 concentrations of 0.25–1.0 g·L-¹ negatively impacted the CD, µ, K, and D for Tetraselmis suecica and Isochrysis galbana culture. Regarding inoculum quality after refrigerated storage at 4±1 °C, NaHCO3 supplements did not sustain the growth rates of C. calcitrans, T. weissflogii, and Chlorella spp. inocula cultured after storage for 7, 15, and 30 days. However, 0.5 g·L-¹ NaHCO3 maintained the growth rate of N. oculata cultured after storage for 7 days. This study provides comprehensive insights into the optimal NaHCO3 supplementation for maintaining each microalgal strain in a stable state for inoculum production applications.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Arkronrat, W. and V. Oniam. 2012. Growth performance and production cost of commercial microalgae cultured under laboratory conditions with different aeration setting. Journal of Fisheries and Environment 36(1): 31–38.
Arkronrat, W., P. Deemark and V. Oniam. 2016. Growth performance and proximate composition of mixed cultures of marine microalgae (Nannochloropsis sp. & Tetraselmis sp.) with monocultures. Songklanakarin Journal of Science and Technology 38(1): 1–5.
Arkronrat, W. and V. Oniam. 2019. Growth performance and production cost of laboratory-scale marine microalgae culture using a light emitting diode. Songklanakarin Journal of Science and Technology 42(5): 1093–1100.
Batac. C.C., N.S. Gathercole, A.F. Maravilla and A.B. Beltran. 2020. Evaluation of different carbonate sources for bicarbonate based integrated carbon capture and algae production system using Spirulina platensis. IOP Conference Series: Materials Science and Engineering 778: 012041. DOI: 10.1088/1757-899X/778/1/012041.
Caturwati, L.N. and R.H. Setyati. 2020. Optimation of Spirulina sp. growth in Walne media with variation of urea and NaHCO3 supplements. Journal of Tropical Biodiversity and Biotechnology 5(1): 53–58. DOI: 10.22146/jtbb.53635.
Chaichalerm, S., P. Pokethitiyook, W. Yuan, M. Meetam, K. Sritong, W. Pugkaew, K. Kungvansaichol, M. Kruatrachue and P. Damrongphol. 2012. Culture of microalgal strains isolated from natural habitats in Thailand in various enriched media. Applied Energy 89: 296–302. DOI: 10.1016/j.apenergy.2011.07.028.
de Silva, H.R., F.C.P. da Silva, C.E.C. Prete, R.T. Hoshino, R.T. de Faria, M.S. Mantovani and C.L.B. Guedes. 2020. Cryopreservation of Chlorella vulgaris using different cryoprotectant agents. Journal of Agricultural Science 12(7): 75–81. DOI: 10.5539/jas.v12n7p75.
de Farias Silva, C.E., B. Gris, E. Sforza, N.L. Rocca and A. Bertucco. 2016. Effects of sodium bicarbonate on biomass and carbohydrate production in Synechococcus PCC 7002. Chemical Engineering Transactions 49: 241–246. DOI: 10.3303/CET1649041.
Foo, S.C., C.Y. Mok, S.Y. Ho and N.M.H. Khong. 2023. Microalgal culture preservation: Progress, trends and future developments. Algal Research 71: 103007. DOI: 10.1016/j.algal.2023.103007.
Ishika, T., N.R. Moheimani, P.A. Bahri, D.W. Laird, S. Blair and D. Parlevliet. 2017. Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity. Algal Research 28: 66–73. DOI: 10.1016/j.algal.2017.10.002.
Ismail, D., Z.L. Agustin and D.N. Putri. 2018. Increased lipids production of Nannochloropsis oculata and Chlorella vulgaris for biodiesel synthesis through the optimization of growth medium composition arrangement by using bicarbonate addition. MATEC Web of Conferences 154: 01009. DOI: 10.1051/matecconf/201815401009.
Khan, A.N.M.A.I., M.A.B. Habib and M.I. Miah. 2020. Effects of inorganic media enriched with sodium acetate on the growth performance and nutrient content in the microalga Chlorella vulgaris. Journal of Fisheries and Environment 44(3): 32–44.
Li, J., C. Li, C.Q. Lan and D. Liao. 2018. Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Microbial Cell Factories 17(1): 111. DOI: 10.1186/s12934-018-0953-4.
Lindberg, A., C. Niemi, J. Takahashi, A. Sellstedt and F.G. Gentili. 2022. Cold stress stimulates algae to produce value-added compounds. Bioresource Technology Reports 19: 101145. DOI: 10.1016/j.biteb.2022.101145.
Pimolrat, P., S. Direkbusarakum, C. Chinajariyawong and S. Powtongsook. 2010. The effect of sodium bicarbonate concentrations on growth and biochemical composition of Chaetoceros gracilis Schutt. Kasetsart University Fisheries Research Bulletin 34(2): 40–47.
Ramlee, A., N.W. Rasdi, M.E.A. Wahid and M. Jusoh. 2021. Microalgae and the factors involved in successful propagation for mass production. Journal of Sustainability Science and Management 16(3): 21–42. DOI: 10.46754/jssm.2021.04.003.
Ratomski, P., M. Hawrot-Paw and A. Koniuszy. 2021. Utilisation of CO2 from sodium bicarbonate to produce Chlorella vulgaris biomass in tubular photobioreactors for biofuel purposes. Sustainability 13: 9118. DOI: 10.3390/su13169118.
Salbitani, G., F. Bolinesi, M. Affuso, F. Carraturo, O. Mangoni and S. Carfagna. 2020. Rapid and positive effect of bicarbonate addition on growth and photosynthetic efficiency of the green microalgae Chlorella sorokiniana (Chlorophyta, Trebouxiophyceae). Applied Sciences 10: 4515. DOI: 10.3390/app10134515.
Sampathkumar, S.J. and K.M. Gothandam. 2019. Sodium bicarbonate augmentation enhances lutein biosynthesis in green microalgae Chlorella pyrenoidosa. Biocatalysis and Agricultural Biotechnology 22: 101406. DOI: 10.1016/j.bcab.2019.101406.
Singh, R.P., P. Yadav, A. Kumar, A. Hashem, A-BF. Al-Arjani, E.F. Abd_Allah, A. Rodríguez Dorantes and R.K. Gupta. 2022. Physiological and biochemical responses of bicarbonate supplementation on biomass and lipid content of green algae Scenedesmus sp. BHU1 isolated from wastewater for renewable biofuel feedstock. Frontiers in Microbiology 13: 839800. DOI: 10.3389/fmicb.2022.839800.
Srinivasan, R., A. Mageswari, P. Subramanian, C. Suganthi, A. Chaitanyakumar, V. Aswini and K.M. Gothandam. 2018. Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Scientific Reports 8(1): 6972. DOI: 10.1038/s41598-018-25417-5.
Tahiri, S., A.F. EI, H. Loulad, M. Idhalla and N. Elmtili. 2023. Effects of sodium bicarbonate and photoperiod on cell growth and morphology of Isochrysis galbana. Moroccan Journal of Chemistry 11(1): 51–60. DOI: 10.48317/IMIST.PRSM/morjchem-vllil.36837.
Umetani, I., E. Janka, M. Sposób, C. Hulatt, S. Kleiven and R. Bakke. 2021. Bicarbonate for microalgae cultivation: a case study in a chlorophyte, Tetradesmus wisconsinensis isolated from a Norwegian lake. Journal of Applied Phycology 33: 1341–1352. DOI: 10.1007/s10811-021-02420-4.
White, D.A., A. Pagarette, P. Rooks and S.T. Ali. 2012. The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. Journal of Applied Phycology 25. DOI:10.1007/s10811-012-9849-6.
Wongrat, L. 2000. Manual of Plankton Culture. Kasetsart University, Bangkok, Thailand. 127 pp.
Xiaoning, L., C. Guangyao, T. Yi and W. Jun. 2020. Application of effluent from WWTP in cultivation of four microalgae for nutrients removal and lipid production under the supply of CO2. Renewable Energy 149: 708–715. DOI: 10.1016/j.renene.2019.12.092.