Genetic Diversity of Blue Swimming Crab (Portunus pelagicus) from a Crab Bank Project and Wild Crabs in Trang and Krabi Province, Thailand Using mtDNA Control Region Sequences

Main Article Content

Juthamas Suppapan
Apirak Songrak
Wikit Phinrub
Worawitoo Meesook
Verakiat Supmee

Abstract

The blue swimming crab (Portunus pelagicus) is an economically important crustacean with increasing consumption demands, while wild stock is declining. Therefore, a crab bank project has been initiated to restore crab resources. The crab bank, which has been operating for at least 10 years, collects berried females, hatches their eggs to the zoea stage, and release them into the sea. However, the project’s success has not been evaluated. This study investigates the genetic diversity of berried females from the crab bank project and wild crabs in Trang and Krabi provinces. The nucleotide sequences within the mitochondrial DNA control region of P. pelagicus were analyzed. We found that 65.72% of wild crabs in Trang and 39.72% in Krabi shared haplotypes with berried females from the crab bank project. This indicates a division within the P. pelagicus population, forming two distinct groups corresponding to Trang and Krabi. The demographic history analysis suggests a period of population expansion. Based on these genetic diversity findings, we propose management strategies for the crab bank projects in both areas. However, this study is preliminary, and further research incorporating additional genetic markers from the nuclear genome and more samples from areas beyond Trang and Krabi is recommended.

Article Details

How to Cite
Suppapan, J. ., Songrak, A. ., Phinrub, W. ., Meesook, W. ., & Supmee, V. (2024). Genetic Diversity of Blue Swimming Crab (Portunus pelagicus) from a Crab Bank Project and Wild Crabs in Trang and Krabi Province, Thailand Using mtDNA Control Region Sequences. Journal of Fisheries and Environment, 48(2), 94–111. https://doi.org/10.34044/j.jfe.2024.48.2.08
Section
Research Article

References

Asphama, A.I., F. Amir, A.C. Malina and Y. Fujaya. 2015. Habitat preferences of blue swimming crab (Portunus pelagicus). Aquacultura Indonesiana 16(1): 10–15. DOI: 10.21534/ai.v16i1.10.

Aubert, H. and D.V. Lighter. 2000. Identification of genetic populations of the Pacific blue shrimp Penaeus stylirostris of the Gulf of California, Mexico. Marine Biology 137: 875–885. DOI: 10.1007/s002270000419.

Avise, J.C., J. Arnold, R.M. Ball, E. Bermingham, T. Lamb, J.E. Neigel, C.A. Reeb and N.C. Saunders. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology, Evolution, and Systematics 18: 489–522. DOI: 10.1146/annurev.es.18.110187.002421.

Avise, J.C. 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts, USA. 447 pp.

Boore, J.L. 1999. Animal mitochondrial genomes. Nucleic Acids Research 27(8): 1767–1780. DOI: 10.1093/nar/27.8.1767.

Cai, S., T. Gao, B. Yan, A. Zhu and X. Zhang. 2020. Preliminary assessment of stock enhancement in swimming crab (Portunus trituberculatus) based on molecular markers. Pakistan Journal of Zoology 52(1): 61–68. DOI: 10.17582/journal.pjz/2020.52.1.61.68.

Cho, E.M., G.S. Min, S. Kanwal, Y.S. Hyun, S.W. Park and K.W. Chung. 2009. Phylogenetic analysis of mitochondrial DNA control region in the swimming crab, Portunus trituberculatus. Animal Cells and Systems 13: 305–314. DOI: 10.1080/19768354.2009.9647223.

Excoffier, L. and H.E.L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analysis under Linux and Windows. Molecular Ecology Resources 10: 564–567. DOI: 10.1111/j.1755-0998.2010.02847.x.

Fishery Statistics Analysis and Research Group. 2022. Fisheries Statistics of Thailand 2020, No. 4/2022. Department of Fisheries, Ministry of Agriculture and Cooperatives, Bangkok, Thailand. 86 pp.

Frankham, R., J.D. Ballou and D.A. Briscoe. 2002. Introduction to Conservation Genetics. Cambridge University Press, New York, USA. 617 pp.

Fu, F.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925. DOI: 10.1093/genetics/147.2.915.

Gwak, W.S. and A. Roy. 2023. Genetic diversity and population structure of brown croaker (Miichthys miiuy) in Korea and China inferred from mtDNA control region. Genes 14: 1692. DOI: 10.3390/genes14091692.

Kangas, M.I. 2000. Synopsis of the Biology and Exploitation of the Blue Swimmer Crab, Portunus pelagicus Linnaeus, in Western Australia. Fisheries Research Report No.121, Fisheries Research Division, Western Australia, Australia. 22 pp.

Khamnamtong, B., S. Prasertlux, S. Janpoom and S. Klinbunga. 2021. Genetic differentiation of the blue swimming crab Portunus pelagicus along the coastal Thai waters revealed by SSCP analysis of cytochrome c oxidase subunit I. Genetics of Aquatic Organisms 5(2): 55–65. DOI: 10.4194/2459-1831-v5_2_02.

Klinbunga, S., K. Khetpu, B. Khamnamtong and P. Menasveta. 2007. Genetic heterogeneity of the blue swimming crab (Portunus pelagicus) in Thailand determined by AFLP analysis. Biochemical Genetics 45: 725–736. DOI: 10.1007/s10528-007-9110-1.

Klinbunga, S., V. Yuvanatemiya, S. Wongphayak, K. Khetpu, P. Menasveta and B. Khamnamtong. 2010. Genetic population differentiation of the blue swimming crab Portunus pelagicus (Portunidae) in Thai waters revealed by RAPD analysis. Genetics and Molecular Research 9(3): 1615–1624. DOI: 10.4238/vol9-3gmr886.

Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. DOI: 10.1093/molbev/msw054.

Liu, J., C.L. Brown and T. Yang. 2009. Population genetic structure and historical demography of grey mullet, Mugil cephalus, along the coast of China, inferred by analysis of the mitochondrial control region. Biochemical Systematics and Ecology 37: 556–566. DOI: 10.1016/j.bse.2009.09.002.

Lu, Y.M., C.H. Shih, P.C. Chen, W.C. Kao, Y.C. Lee, Y.S. Han and T.D. Tzeng. 2022. Phylogeography and genetic structure of the swimming crabs Portunus sanguinolentus (Herbst, 1783) in East Asia. Journal of Marine Science and Engineering 10: 281. DOI: 10.3390/ jmse10020281.

Madduppa, H., R. Martaulina, Z. Zairion, R.M. Renjani, M. Kawaroe, N.P. Anggraini, B. Subhan, I. Verawati and L.M.I. Sani. 2021. Genetic population subdivision of the blue swimming crab (Portunus pelagicus) across Indonesia inferred from mitochondrial DNA: Implication to sustainable fishery. PLoS ONE 16(2): e0240951. DOI: 10.1371/journal.pone.0240951.

Meagher, T.D. 1971. Ecology of the Crab Portunus pelagicus (Crustacean: Portunidae) in South Western Australia. Ph.D. Thesis, University of Western Australia, Perth, Australia. 462 pp.

Murakami, T., S. Aida, K. Yoshioka, H. Yoshida, G.E. Blanco, M. Nishibori and M. Tomoya. 2006. Mitochondrial DNA and microsatellite DNA as genetic tags for stocked population of black rockfish Sebastes inermis of hatchery origin. Nippon Suisan Gakkaishi 72: 710–716. DOI: 10.2331/suisan.72.710.

Nei, M. 1972. Genetic distance between populations. The American Naturalist 106: 283–292. DOI: 10.1086/282771.

Nei, M. 1982. Evolution of human races at the gene level. In: Human Genetics, part A: The Unfolding Genome (eds. B. Bonne-Tamir, P. Cohen and R.N. Goodman), pp. 167–181. Alan Liss, New York, USA.

Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York,

USA. 512 pp.

Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms Of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 1979: 5269–5273.

Ninwichian, P. and S. Klinbunga. 2020. Population genetics of sandfish (Holothuria scabra) In the Andaman Sea, Thailand inferred from 12S rDNA and microsatellite polymorphism. Regional Studies in Marine Science 35: 101189. DOI: 10.1016/j.rsma.2020.101189.

Obata, Y. 2016. Stock enhancement of Portunid crabs in Japan. Proceedings of the Symposium on Strategy for Fisheries Resources Enhancement in the Southeast Asian Region 2016: 157–160.

Pearman, W.S., S.J. Wells, O.K. Silander, N.E Freed and J. Dale. 2020. Concordant geographic and genetic structure revealed by genotyping-by-sequencing in a New Zealand marine isopod. Ecology and Evolution 10: 13624–13639. DOI: 10.1002/ece3.6802.

Ramirez-Soriano, A., S.E. Ramos-Onsins, J. Rozas, F. Calafell and A. Navarro. 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179: 555–567. DOI: 10.1534/genetics.107.083006.

Rozas, J., A. Ferrer-Mata, J.C. Sánchez-DelBarrio, S. GuiraoRico, P. Librado, S.E. Ramos-Onsins and A. SánchezGracia. 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution 34: 3299–3302. DOI: 10.1093/molbev/msx248.

Secor, D.H., A.H. Hines and A.R. Place. 2002. Japanese Hatchery-Based Stock Enhancement: Lessons for the Chesapeake Bay Blue Crab. Maryland Sea Grant Report, Maryland, USA. 46 pp.

Sekino, M., K. Saitoh, T. Yamada, A. Kumagai, M. Hara and Y. Yamashita. 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: Implications for hatchery management related to stock enhancement program. Aquaculture 221: 255–263. DOI: 10.1016/S0044-8486(02)00667-1.

Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

Sun, P., J. Yu, B. Tang and Z. Liu. 2021. Gene variation and population structure of Pampus chinensis in the China coast revealed by mitochondrial control region sequences. Mitochondrial DNA Part B 6(8): 2240–2245. DOI: 10.1080/23802359.2021.1878963.

Supmee, V., J. Suppapan, J. Pechsiri and P. Sangthong. 2017. Population genetic structure of greenback mullet (Liza subviridis) along the Andaman Sea coast of Thailand. Journal of Fisheries Technology Research 11(2): 98–112.

Supmee, V., A. Sawasdee, P. Sangthong and J. Suppapan. 2020. Population genetic structure of blue swimming crab (Portunus pelagicus) in the Gulf of Thailand. Biodiversitas 21(9): 4260–4268. DOI: 10.13057/biodiv/d210943.

Supmee, V., A. Songrak, J. Suppapan and P. Sangthong. 2021a. Population genetic structure of ornate threadfin bream (Nemipterus hexodon) in Thailand. Tropical Life Science Research 32(1): 63–82. DOI: 10.21315/tlsr2021.32.1.4.

Supmee, V., A. Songrak, J. Suppapan and P. Sangthong. 2021b. Population genetic structure of the wedge clam (Donax scortum) along the Andaman Sea coast of Thailand. Journal of Fisheries and Environment 45(1): 85–97.

Supmee, V., P. Sangthong, J. Pechsiri and J. Suppapan. 2023. Population genetic structure of the so-iny mullet (Planiliza haematocheilus) along the coast of Thailand. Journal of Fisheries and Environment 47(1): 75–88.

Suppapan, J., J. Pechsiri, S. O-Thong, A. Vanichanon, P. Sangthong and V. Supmee. 2017. Population genetic analysis of oceanic paddle crab (Varuna litterata) in Thailand. Sains Malaysiana 46(12): 2251–2261. DOI: 10.17576/jsm-2017-4612-01.

Suppapan, J., P. Sangthong, A. Songrak and V. Supmee. 2021. Population genetic structure of hard clam (Meretrix lyrata) along the Southern coast of Thailand. Biodiversitas 22(5): 2486–2496. DOI: 10.13057/biodiv/d220505.

Suppapan, J., A. Songrak, W. Meesook and V. Supmee. 2023. Population genetic structure of the blue swimming crab (Portunus pelagicus) along the Andaman Sea Coast of Thailand. Sains Malaysiana 52(2): 369–380. DOI: 10.17576/jsm-2023-5202-05.

Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595. DOI: 10.1093/genetics/123.3.585.

Theeranukul, P., S. Watabe, D. Ikeda, F. Maltagliati, J. Kettratad and S. Piyapattanakorn. 2021. Genetic diversity of blue-spotted mudskipper (Boleophthalmus boddarti) populations in Gulf of Thailand. Agriculture and Natural Resources 55: 838–847. DOI: 10.34044/j.anres.2021.55.5.14.

Thiammueang, D., R. Chuenpagdee and K. Juntarashote. 2012. The "crab bank" project: Lessons from the voluntary fishery conservation initiative in Phetchaburi Province, Thailand. Agriculture and Natural Resources 46(3): 427–439.

Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. DOI: 10.1093/nar/22.22.4673.

Tokuyama, T., J.Y. Shy, H.C. Lin, Y. Henmi, P. Mather, J. Hughes, M. Tsuchiya and H. Imai. 2020. Genetic population structure of the fiddler crab Austruca lactea (De Haan, 1835) based on mitochondrial DNA control region sequences. Crustacean Research 49: 141–153. DOI: 10.18353/crustacea.49.0_141.

Wang, H., G. Feng and Y. Zhang. 2020. Studies on genetic diversity of Chinese mitten crab Eriocheir sinensis of Yangtze River system based on mitochondrial DNA control region. Journal of Physics: Conference Series 1549: 032010. DOI: 10.1088/1742-6596/1549/3/032010.

Watterson, G.A. 1984. Allele frequencies after a bottleneck. Theoretical Population Biology 26: 387–407. DOI: 10.1016/0040-5809(84)90042-X.

Wellmann, R. and J. Bennewitz. 2019. Key genetic parameters for population management.

Frontiers in Genetics 10: 667. DOI: 10.3389/fgene.2019.00667.

William, L.F. and F.W. Allendorf. 2007. Conservation and the Genetics of Populations. Blackwell Publishing, Oxford, UK. 642 pp.

Williams, M.J. 1986. Evaluation of anchor tags for marking the commercial sand crab, Portunus pelagicus (L.) (Portunidae: Decapoda). Australian Journal of Marine and Freshwater Research 37: 707–712. DOI: 10.1071/MF9860707.

Yang, Z. 2006. Computational Molecular Evolution. Oxford University Press, New York, USA. 376 pp.