Assessing Environmental Factors for Seagrass Transplantation Site Suitability in Thailand

Main Article Content

Nuttiga Hempattarasuwan
Yaowaluk Monthum
Methee Kaewnern
Tipamat Upanoi
Attawut Khantavong
Pattama Tongkok
Alongot Intarachart
Kulapramote Prathumchai
Thon Thamrongnawasawat
Chatcharee Kaewsuralikhit

Abstract

This study aims to identify the environmental factors influencing seagrass distribution, with the aim of evaluating the suitability of an area for seagrass growth. Upon determining factor values, we assessed the accuracy of the methods used to ensure the reliability of those values for proposed seagrass restoration sites. R programming and structured interviews were used to identify relevant factors, while a Geographic Information System (GIS) was utilized to pinpoint six suitable seagrass transplantation sites in the Gulf of Thailand and another six in the Andaman Sea. The selection of factors to evaluate the suitability of sites for seagrass transplantation included the presence of natural barriers that mitigate storm surges and diminish wave energy, their proximity to seagrass beds, shore elevation above the lowest low water mark, extent of seagrass coverage, sediment grain size, and organic matter content. The Simple Additive Weighting (SAW) method proved effective in identifying potentially suitable seagrass habitats. The overall accuracy of the suitability maps for seagrass transplantation ranged from 60.0% to 93.3%. Notably, high-suitable and very high-suitable sites for seagrass transplantation were identified in Phangan Island’s Nai Wok Bay (81%), Thalen Bay - zone 3 (75%), Na Tham Bay at Samui Island (62%), and Tan Island - east side (55%), respectively. Our findings underscore that identifying areas and the specific types of habitats suitable for seagrass restoration can significantly inform decision-making and facilitate the implementation of actions aimed at restoring seagrass ecosystems.

Article Details

How to Cite
Hempattarasuwan, N., Monthum, Y., Kaewnern, M., Upanoi, T., Khantavong, A., Tongkok, P., Intarachart, A., Prathumchai, K., Thamrongnawasawat, T., & Kaewsuralikhit, C. (2024). Assessing Environmental Factors for Seagrass Transplantation Site Suitability in Thailand . Journal of Fisheries and Environment, 48(1), 148–167. https://doi.org/10.34044/j.jfe.2024.48.1.13
Section
Research Article

References

Baumstark, R., R. Duffey and R. Pu. 2016. Mapping seagrass and colonized hard bottom in Springs Coast, Florida using WorldView-2 satellite imagery. Estuarine, Coastal and Shelf Science 181: 83–92. DOI: 10.1016/j.ecss.2016.08.019.

Bradley, K. and C. Houser. 2009. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. Journal of Geophysical Research 114 (F01004): 1–13. DOI: 10.1029/2007JF000951.

Calumpong, H.P. and M.S. Fonseca. 2001. Seagrass transplantation and other seagrass restoration methods. In: Global Seagrass Research Methods (eds. F.T. Short and R.G. Coles), pp. 425–443. Elsevier Science, Amsterdam, Netherlands.

Coles, R. and M. Fortes. 2001. Protecting seagrass–approaches and methods. In: Global Seagrass Research Methods (eds. F.T. Short and R.G. Coles), pp. 445–463. Elsevier Science, Amsterdam, Netherlands.

Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37(1): 35–46. DOI: 10.1016/0034-4257(91)90048-B.

Cullen-Unsworth, L.C. and R.K.F. Unsworth. 2016. Strategies to enhance the resilience of the world's seagrass meadows. Journal of Applied Ecology 53(4): 967–972. DOI: 10.1111/1365-2664.12637.

Downie, A.L., M. von Numers and C. Boström. 2013. Influence of model selection on the predicted distribution of the seagrass Zostera marina. Estuarine, Coastal and Shelf Science 121–122: 8–19. DOI: 10.1016/j.ecss.2012.12.020.

Duarte, C.M., H. Kennedy, N. Marbà and I. Hendriks. 2013. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean and Coastal Management 83: 32–38. DOI: 10.1016/j.ocecoaman.2011.09.001.

Environmental Systems Research Institute. 2023. How inverse distance weighted interpolation works. https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm. Cited 4 Sep 2023.

Gera, A., J.F. Pagès, R. Arthur, S. Farina, G. Roca, J. Romero and T. Alcoverro. 2014. The effect of a centenary storm on the long-lived seagrass Posidonia oceanica. Limnology and Oceanography 59(6): 1910–1918. DOI: 10.4319/lo.2014.59.6.1910.

Hughes, R.G., M. Potouroglou, Z. Ziauddin and J.C. Nicholls. 2018. Seagrass wasting disease: Nitrate enrichment and exposure to a herbicide (Diuron) increases susceptibility of Zostera marina to infection. Marine Pollution Bulletin 134: 94–98. DOI: 10.1016/j.marpolbul.2017.08.032.

Ibrahim, A. and R.A. Surya. 2019. The implementation of Simple Additive Weighting (SAW) method in decision support system for the best school selection in Jambi. Journal of Physics: Conference Series 1338(1): 012054. DOI: 10.1088/1742-6596/1338/1/012054.

Kanmarangkool, S., N. Whanpetch, T. Pokavanich and S. Meksumpun. 2022. Annual productivity of seagrass at Khung Kraben Lagoon, Chanthaburi Province, Thailand. Journal of Fisheries and Environment 46(3): 221–230.

Kuhn, M. and K. Johnson. 2013. Applied predictive modeling. Springer, New York, USA. 600 pp.

Lanuru, M., S. Mashoreng and K. Amri. 2018. Using site-selection model to identify suitable sites for seagrass transplantation in the west coast of South Sulawesi. Journal of Physics: Conference Series 979(1): 012007. DOI: 10.1088/1742-6596/979/1/012007.

Leliaert, F. and E. Coppejans. 2003. The marine species of Cladophora (Chlorophyta) from the South African East Coast. Nova Hedwigia 76: 45–82.

Malczewski, J. 1999. GIS and Multicriteria Decision Analysis. John Wiley and Sons, New York, USA. 392 pp.

Maleika, W. 2020. Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics 12(4): 397–407. DOI: 10.1007/s12518-020-00307-6.

Marine and Coastal Resources Research and Development Institute. 2022. Integrated Seagrass Restoration Action Report Year 2022. Department of Marine and Coastal Resources, Bangkok, Thailand. 93 pp.

Matheson, F.E., J. Reed, V.M. Dos Santos, G. Mackay and V.J. Cummings. 2016. Seagrass rehabilitation: successful transplants and evaluation of methods at different spatial scales. New Zealand Journal of Marine and Freshwater Research 51(1): 96–109. DOI: 10.1080/00288330.2016.1265993.

McGlathery, K.J., L.K. Reynolds, L.W. Cole, R.J. Orth, S.R. Marion and A. Schwarzschild. 2012. Recovery trajectories during state change from bare sediment to eelgrass dominance. Marine Ecology Progress Series 448: 209–221.

McKenzie, L.J., L.M. Nordlund, B.L. Jones, L.C. Cullen-Unsworth, C. Roelfsema and R.K. F. Unsworth. 2020. The global distribution of seagrass meadows. Environmental Research Letters 15(7): 074041. DOI: 10.1088/1748-9326/ab7d06.

Monthum, Y., A. Khantavong, N. Hempattarasuwan, C. Roengthong, P. Tongkok, J. Chusrisom and C. Kaewsuralikhit. 2023. The Effect of Shore Height on the Distribution of Upper Intertidal Seagrass in the Andaman Sea, Thailand. Journal of Fisheries and Environment 47(2): 73–84.

Muhamad, M.A.H., R. Che Hasan, N. Md Said and J.L.S. Ooi. 2021. Seagrass habitat suitability model for Redang Marine Park using multibeam echosounder data: Testing different spatial resolutions and analysis window sizes. PLoS ONE 16(9): e0257761. DOI: 10.1371/journal.pone.0257761.

Panjaitan, M.I. 2020. Simple Additive Weighting (SAW) method in determining beneficiaries of foundation benefits. Jurnal Teknologi Komputer 13(1): 19–25.

Paulo, D., A. Cunha, J. Boavida, E. Serrao, E. Gonçalves and M. Fonseca. 2019. Open coast seagrass restoration. Can we do it? Large scale seagrass transplants. Frontiers in Marine Science 6(52): 1–15. DOI: 10.3389/fmars.2019.00052.

Praisankul, S. and O. Nabangchang-Srisawalak. 2017. The economic value of seagrass ecosystem in Trang Province, Thailand. Journal of Fisheries and Environment 40(3): 138–155.

Quiros, T.E.A.L., D. Croll, B. Tershy, M.D. Fortes and P. Raimondi. 2017. Land use is a better predictor of tropical seagrass condition than marine protection. Biological Conservation 209: 454–463. DOI: 10.1016/j.biocon.2017.03.011.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/ Cited 2 May 2022.

Short, F.T., R.G. Coles and C. Pergent-Martini. 2001. Global seagrass distribution. In : Global Seagrass Research Methods (eds. F.T. Short and R.G. Coles), pp. 5–30. Elsevier Science, Amsterdam, Netherlands.

Short, F., R. Davis, B. Kopp, C.A. Short and D. Burdick. 2002. Site-selection model for optimal restoration of eelgrass Zostera marina in the Northeastern US. Marine Ecology-progress Series 227: 253–267. DOI: 10.3354/meps227253.

Stankovic, M., R. Kaewsrikhaw, E. Rattanachot and A. Prathep. 2019. Modeling of suitable habitat for small-scale seagrass restoration in tropical ecosystems. Estuarine, Coastal and Shelf Science 231: 106465. DOI: 10.1016/j.ecss.2019.106465.

Szantoi, Z., F.J. Escobedo, A. Abd-Elrahman, L. Pearlstine, B. Dewitt and S. Smith. 2015. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environmental Monitoring and Assessment 187(5): 262. DOI: 10.1007/s10661-015-4426-5.

Vafaei, N., R.A. Ribeiro and L.M. Camarinha-Matos. 2022. Assessing normalization techniques for Simple Additive Weighting method. Procedia Computer Science 199: 1229–1236. DOI: 10.1016/j.procs.2022.01.156.

van Katwijk, M.M., A.R. Bos, V.N. de Jonge, L.S.A.M. Hanssen, D.C.R. Hermus and D.J. de Jong. 2009. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin 58(2): 179–188. DOI: 10.1016/j.marpolbul.2008.09.028.

Vichkovitten, T., A. Intarachart, K. Khaodon and S. Rermdumri. 2016. Transplantation of tropical seagrass Enhalus acoroides (L.) in Thai coastal water: Implication for habitat restoratio. GMSARN International Journal 10: 113–120.

Walkley, A. and I.A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29–38. DOI: 10.1097/00010694-193401000-00003.

Waycott, M., C. Duarte, T.J.B. Carruthers, et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 2009: 12377–11238. DOI: 10.1073/pnas.0905620106.