Biomass and Carbon Mapping in the Seagrass Beds at Blebak Beach, Jepara, Indonesia
Main Article Content
Abstract
Seagrass is one of the important ecosystems in coastal areas, alondside mangrove and coral reefs. It plays an important ecological role, particularly in carbon storage. This study aimed to identify the seagrasses species, their distribution, biomass, and carbon stock at Blebak Beach, Jepara, Indonesia. The research utilized a survey method with purposive sampling based on seagrass distribution and the surrounding ecosystems. Biomass and carbon stock sampling focused on individuals with dominant density and coverage values. Biomass and carbon estimates were calculated using the Loss on Ignition (LoI) method, while seagrass distribution was mapped using the supervised classification method. Biomass and carbon stock distribution were analyzed using Inverse Distance Weighted (IDW) interpolation. The results identified four seagrass species: Enhalus acoroides, Thalassia hemprichii, Oceana serullata, and Cymodocea rotundata, covering a total area of 0.45165 ha with a patchy distribution pattern. T. hemprichii exhibited the highest density, at 85,143 stands·m-2, with a total seagrass coverage of 23.91%. The seagrass biomass (dry weight) ranged from 220.89 to 1,320.03 g·m-2, with belowground biomass contributing approximately 60% of the total biomass. The estimated total carbon stock ranged from 110.96 to 691.29 g·m-2, with belowground carbon accounting for 61% of the total carbon stock.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abadie, A., J. Richir, P. Lejeune, M. Leduc and S. Gobert. 2019. Structural changes of seagrass seascapes driven by natural and anthropogenic factors: a multidisciplinary approach. Frontiers in Ecology and Evolution 7: 190. DOI: 10.3389/fevo.2019.00190.
Ambo-Rappe, R. 2022. The success of seagrass restoration using Enhalus acoroides seeds is correlated with substrate and hydrodynamic conditions. Journal of Environmental Management 310: 114692. DOI: 10.1016/j.jenvman.2022.114692.
Barrón, C., N. Marbé., J. Terrados, H. Kennedy and C.M. Duarte. 2004. Community metabolism and carbon budget along a gradient of seagrass (Cymodoea nodusa) colonization. Limnology and Oceanography 49(5): 1642–1651. DOI: 10.4319/lo.2004.49.5.1642.
Braun-Blanquet, J. 1965. Pflanzensoziologie (Plant Sociology : The Study of Plant Communities). Springer, Vienna, Austria. 866 pp.
Brenner, C.L., S.R. Valdez, Y.S. Zhang., E.C. Shaver, B.B. Hughes, B.R. Silliman and J.P. Morton. 2024. Sediment carbon storage differs in native and non-native Caribbean seagrass beds. Marine Environmental Research 194: 106307. DOI: 10.1016/j.marenvres.2023.106307.
CoreMap-LIPI. 2014. Guide for Seagrass Monitoring. Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia. 35 pp.
Duarte, C.M. 1990. Seagrass Nutrien Content. Marine Ecology-Progress Series 6(2): 201–207.
Githaiga, M.N., L. Gilpin, J.G. Kairo and M. Huxham. 2016. Biomass and productivity of seagrasses in Africa. Botanica Marina 59(2–3): 173–186. DOI: 10.1515/bot-2015-0075.
Gladstone-Gallagher, R.V., R.W. Hughes, E.J. Douglas and C.A. Pilditch. 2018. Biomass-dependent seagrass resilience to sediment eutrophication. Journal of Experimental Marine Biology and Ecology 501: 54–64. DOI: 10.1016/j.jembe.2018.01.002.
Helrich, K. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Arlington, USA. 684 pp.
Johannessen, S.C. 2022. How can blue carbon burial in seagrass meadow increase long-term, net sequestration of carbon? A critical review. Environmental Research Letters 17(9): 093004. DOI: 10.1088/1748-9326/ac8ab4.
León-Pérez, M.C., R.A. Armstrong, W.J. Hernández, A. Aguilar-Perera and J. Thompson-Grill. 2020. Seagrass cover expansion of Cajade Muertos Island, Puerto Rico, as determined by long-term analysis of historical aerial and satellite images (1950–2014). Ecological Indicators 117: 106561. DOI: 10.1016/j.ecolind.2020.106561.
Lima, M.A.C., R.D. Ward, C.B. Joyce, K. Kauer and K. Sepp. 2022. Carbon stocking Southern England’s intertidal seagrass meadows. Estuarine, Coastal and Shelf Science 275: 107947. DOI: 10.1016/j.ecss.2022.107947.
Lyimo, L.D. and M.I. Hamisi. 2023. The influence of seagrass and its associated sediment on organic carbon storage: a case of Halodule uninervis and Syringodium isoetifolium meadows of Western India Ocean, Tanzania. Marine Environmental Research 183: 105836. DOI: 10.1016/j.marenvres.2022.105836.
Mazarrasa, I., J. Samper-Villareal, O. Serrano, P.S. Lavery, C.E. Lovelock, N. Marbà, C.M. Duarte and J. Cortés. 2018. Habitat characteristics provide insights of carbon storage in seagrass meadows. Marine Pollution Bulletin 134: 106–117. DOI: 10.1016/j.marpolbul.2018.01.059.
McKenzie, L. and R. Yoshida. 2021. Monitoring a seagrass meadow. Seagrass-Watch: Proceedings of a Workshop for Monitoring Seagrass Habitats in the Port Curtis Coral Coast Region 2021: 30–36.
Mishra, A.K., R. Rasheed and S.H. Farooq. 2025. Seagrass population dynamics and biodiversity assemblages indicate negative effects of short-term nutrient enrichment in tropical island ecosystem. Journal of Environmental Management 373: 123797. DOI: 10.1016/j.jenvman.2024.123797.
Prarikeslan, W., D. Hermon, Y. Suasti and A. Putra. 2019. Density, coverage and biomass of seagrass ecosystem in the Lobam Island, Bintan Regency–Indonesia. IOP Conference Series: Earth and Environmental Science 314(1): 1–8. DOI: 10.1088/1755-1315/314/1/012024.
Ricart, A.M., P.H. York, M.A. Rasheed, M. Pérez, J. Romero, C.V. Bryant and P.I. Macreadie. 2015. Variability of sedimentary organic carbon in patchy seagrass landscapes. Marine Pollution Buletine 100(1): 476–482. DOI: 10.1016/j.marpolbul.2015.09.032.
Satriani, S., Z. Imran, F. Kurniawan, P. Perdinan and A.A. Digdo. 2024. Health status of seagrass meadows arounds the Special Economic Zone (SEZ), West Likupang, North Sulawesi. Journal of Research in Science Education 10(1): 201–209. DOI: 10.29303/jppipa.v10i1.5908.
Sondak, C.F.A. and E.Y. Kaligis. 2022. Assessing the seagrasses meadows status and condition: a case study of Wori seagrass meadows, North Sulawesi, Indonesia. Biodiversitas 23(4): 2156–2166. DOI: 10.13057/biodiv/d230451.
Stankovic, M., A.K. Mishra, Y.P. Rahayu, J. Lefcheck, D. Murdiyarso, D.A. Friess, M. Corkalo, T. Vukovic, M.A. Vanderklift, S.H. Farooq, J.D. Gaitan-Espitia and A. Prathep. 2023a. Blue carbon assessment of seagrass and mangrove ecosystems in South and Southeast Asia: current progress and knowledge gaps. Science of The Total Environment 904: 166618. DOI: 10.1016/j.scitotenv.2023.166618.
Stankovic, M., J. Panyawai, N. Khanthasimachalerm and A. Prathep. 2023b. National assessment and variability of blue carbon in seagrass ecosystems in Thailand. Marine Pollution Bulletin 197: 115708. DOI: 10.1016/j.marpolbul.2023.115708.
Sugianti, Y. and M. Mujiyanto. 2020. Current status and species diversity of seagrass in Panjang Island, Banten. Indonesian Journal of Marine Sciences 25(1): 17–22.
Suwandhahannadi, W.K., D. Wickramasinghe, D.D.G.L. Dahanayaka and L. Le De. 2024. Blue carbon storage in a tropical coastal estuary: insight for conservation priorities. Science of the Total Environment 906: 167733. DOI: 10.1016/j.scitotenv.2023.167733.