Preliminary Study on Bradycardia in Scylla serrata (Forskål, 1775) in Response to Pure Tone Stimuli

Main Article Content

Meng-Li Tsai
Ming-Ta Chiang
Ping-Jung Chu
Tsen-Chien Chen

Abstract

There are growing concerns about the effects of human-generated sounds on aquatic animals. Mud crabs of the genus Scylla, which are economically important species, are typically farmed along coastal areas that are potentially threatened by man-made noise. We observed the heart rate of mud crabs Scylla serrata (Forskål, 1775) exposed to pure tones lasting 1 s (short-duration) and 30 s (long-duration). Crabs were exposed to both short- and long-duration sounds at eight frequencies (ranging from 100 Hz to 2,200 Hz). Our results revealed the following: (1) the initial sound elicited bradycardia across all experimental conditions; (2) both playing sound and the cessation of the sound elicited bradycardia in many long-duration sound tests; and (3) bradycardia disappeared following repeated exposures to sound; however (4) bradycardia was sustained in nearly all short-duration  exposures at frequencies ≤1,000 Hz. We suspect that the crabs may have been more stressed than expected, as we observed sustained bradycardia frequently following short-duration exposures to lower acoustic frequencies and twice in long-duration exposure tests. The growth and health of reared crabs may be negatively impacted, which could subsequently affect the production.

Article Details

How to Cite
Tsai, M.-L., Chiang, M.-T., Chu, P.-J., & Chen, T.-C. (2025). Preliminary Study on Bradycardia in Scylla serrata (Forskål, 1775) in Response to Pure Tone Stimuli. Journal of Fisheries and Environment, 49(2), 80–93. https://doi.org/10.34044/j.jfe.2025.49.2.06
Section
Research Article

References

Aimon, C., S.D. Simpson, R.A. Hazelwood, R. Bruintjes and M.A. Urbina. 2021. Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas. Environmental Pollution 285: 11748. DOI: 10.1016/j.envpol.2021.117148.

Barrios, N., M. Farias and M.A. Moita. 2021. Threat induces cardiac and metabolic changes that negatively impact survival in flies. Current Biology 31(24): 5462–5472.

Bejder, L., A. Samuels, H. Whitehead, H. Finn and S. Allen. 2009. Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Marine Ecology Progress Series 395: 177–185.

Burnovicz, A., D. Oliva and G. Hermitte. 2009. The cardiac response of the crab Chasmagnathus granulatus as an index of sensory perception. Journal of Experimental Biology 212(2): 313–324.

Calabrese, R.L., B.J. Norris and A. Wenning. 2016. The neural control of heartbeat in invertebrates. Current Opinion in Neurobiology 41: 68–77.

Canero, E.M. and G. Hermitte. 2014. New evidence on an old question: is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans? Journal of Physiology-Paris 108(2–3): 174–186.

Carter, E.E., T. Tregenza and M. Stevens. 2020. Ship noise inhibits colour change, camouflage, and anti-predator behaviour in shore crabs. Current Biology 30(5): R211–R212.

Charifi, M., M. Sow, P. Ciret, S. Benomar and J.C. Massabuau. 2017. The sense of hearing in the Pacific oyster, Magallana gigas. PLoS ONE 12(10): e0185353. DOI: 10.1371/journal.pone.0185353.

Cuadras, J. 1981. Behavioral determinants of severe cardiac inhibition. Physiological Psychology 9(4): 384–392.

Davidsen, J.G., H. Dong, M. Linné, et al. 2019. Effects of sound exposure from a seismic airgun on heart rate, acceleration and depth use in free-swimming Atlantic cod and saithe. Conservation Physiology 7(1): coz020. DOI:10.1093/conphys/coz020.

Day, R.D., R.D. McCauley, Q.P. Fitzgibbon, K. Hartmann and J.M. Semmens. 2019. Seismic air guns damage rock lobster mechanosensory organs and impair righting reflex. Proceedings of the Royal Society B: Biological Sciences 286(1907): 20191424. DOI: 10.1098/rspb.2019.1424.

Dehaudt, B., M. Nguyen, A. Vadlamudi and D.T. Blumstein. 2019. Giant clams discriminate threats along a risk gradient and display varying habituation rates to different stimuli. Ethology 125(6): 392–398.

del Rosal, E., L. Alonso, R. Moreno, M. Vázquez and J. Santacreu. 2006. Simulation of habituation to simple and multiple stimuli. Behavioural Processes 73(3): 272–277.

Di Franco, E., P. Pierson, L. Di Iorio, et al. 2020. Effects of marine noise pollution on Mediterranean fishes and invertebrates: A review. Marine Pollution Bulletin 159: 111450. DOI: 10.1016/j.marpolbul.2020.111450.

Duarte, C.M., L. Chapuis, S.P. Collin, et al. 2021. The soundscape of the Anthropocene ocean. Science 371: 6529. DOI: 10.1126/science.aba4658.

Edmonds, N.J., C.J. Firmin, D. Goldsmith, R.C. Faulkner and D.T. Wood. 2016. A review of crustacean sensitivity to high amplitude underwater noise: Data needs for effective risk assessment in relation to UK commercial species. Marine Pollution Bulletin 108: 5–11.

Fragasso, J., K.M. Helal and L. Moro. 2024. Transfer-path analysis to estimate underwater radiated noise from onboard structure-borne sources. Applied Ocean Research 147: 103979. DOI: 10.1016/j.apor.2024.103979.

Fort, T.J., V. Brezina and M.W. Miller. 2007. Regulation of the crab heartbeat by FMRFamide-like peptides: multiple interacting effects on center and periphery. Journal of Neurophysiology 98: 2887–2902.

Groves, P.M. and R.F. Thompson. 1970. Habituation: a dual-process theory. Psychological Review 77: 419–450.

Haley, J.A., D. Hampton and E. Marder. 2018. Two central pattern generators from the crab, Cancer borealis, respond robustly and differentially to extreme extracellular pH. eLife 7: e41877. DOI: 10.7554/eLife.41877.

Hawkins, A.D., R.A. Hazelwood, A.N. Popper and P.C. Macey. 2021. Substrate vibrations and their potential effects upon fishes and invertebrates. The Journal of the Acoustical Society of America 149(4): 2782. DOI: 10.1121/10.0004773.

Hildebrand, J.A. 2009. Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series 395: 5–20.

Horch, K. 1971. An organ for hearing and vibration sense in the ghost crab Ocypode. Zeitschrift für vergleichende Physiologie 73: 1–21.

Hubert, J., E. Booms, R. Witbaard and H. Slabbekoorn. 2022. Responsiveness and habituation to repeated sound exposures and pulse trains in blue mussels. Journal of Experimental Marine Biology and Ecology 547: 151668. DOI: 10.1016/j.jembe.2021.151668.

Imtiaz, N., J. Wang, K. Waiho, R. Li, C. Wang and Q. Wu. 2024. The impact of noise on the stress response of Portunus trituberculatus in a land-based monoculture system. Canadian Journal of Zoology 102(8): 635–644.

Jahan, H. and M.S. Islam. 2016. Economic performance of live crab (Scylla serrata) business in the southwest coastal region of Bangladesh. Int. International Journal of Fisheries and Aquatic Studies 4(1): 453–457.

Jones, I.T., J.A. Stanley and T.A. Mooney. 2020. Impulsive pile driving noise elicits alarm responses in squid (Doryteuthis pealeii). Marine Pollution Bulletin 150: 110792. DOI: 10.1016/j.marpolbul.2019.110792.

Lin, H.T., T.C. Chen, J.P. Change, Z.Y. Chou, S.Y. Chiou and M.L. Tsai. 2021. Simple method for long-term recording of electrocardiogram signals in prawns. Aquatic Biology 30: 56–68.

Majeed, Z.R., J. Titlow, H.B. Hartman and R. Cooper. 2013. Proprioception and tension receptors in crab limbs: Student laboratory exercises. Journal of Visualized Experiments 80: 51050. DOI: 10.3791/51050.

McGaw, I.J. and S.J. Nancollas. 2021. Patterns of heart rate and cardiac pausing in unrestrained resting decapod crustaceans. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 335(8): 678–690.

McGaw, I.J. and R.A. Ebrahim. 2024. Cardiovascular physiology of decapod crustaceans: from scientific inquiry to practical applications. Journal Experimental Biology 227(20): jeb247456. DOI: 10.1242/jeb.247456.

Miah, M.R., M.M. Hossain and M.M. Islam. 2022. Assessing sustainability aspects of mud crab (Scylla sp.) fishery and its link to social-ecological traps in the Bangladesh Sundarbans. Coastal Management 50(4): 346–371.

Mills, S.C., R. Beldade, L. Henry, D. Laverty, S.L. Nedelec, S.D. Simpson and A.N. Radford. 2020. Hormonal and behavioural effects of motorboat noise on wild coral reef fish. Environmental Pollution 262: 114250. DOI: 10.1016/j.envpol.2020.114250.

Nedelec, S.L., A.N. Radford, S.D. Simpson, B. Nedelec, D. Lecchini and S.C. Mills. 2014. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate. Scientific Reports 4: 5891. DOI: 10.1038/srep05891.

Nedelec, S.L., S.C. Mills, D. Lecchini, B. Nedelec, S.D. Simpson and A.N. Radford. 2016. Repeated exposure to noise increases tolerance in a coral reef fish. Environmental Pollution 216: 428–436.

Pati, S.G., B. Paital, B.F. Panda, S. Jena and. K. Sahoo. 2023. Impacts of habitat quality on the physiology, ecology, and economical value of mud crab Scylla sp.: A comprehensive review. Water 15(11): 2029. DOI: 10.3390/w15112029.

Poole, S., J. Mayze, P. Exley and C. Paulo. 2008. Maximising revenue within the NT mud crab fishery by enhancing post-harvest survival of mud crabs. Department of Primary Industries and Fisheries, Brisbane. https://www.frdc.com.au/project/2003-240. Cited 1 Mar 2025.

Popper, A.N., A.D. Hawkins and F. Thomsen. 2020. Taking the animals’ perspective regarding anthropogenic underwater sound. Trends in Ecology and Evolution 35(9): 787–794.

Popper, A.N., L. Hice-Dunton, E. Jenkins, et al. 2022. Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. The Journal of the Acoustical Society of America 151(1): 205. DOI: 10.1121/10.0009237.

Roberts, L., S. Cheesman, T. Breithaupt and M. Elliott. 2015. Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Marine Ecology Progress Series 538: 185–195.

Santos, T.C., R.S. Gates, C.F. Souza, I.F.F. Tinôco, M.G.L. Cândido and L.C.S.R. Freitas. 2019. Meat quality parameters and the effects of stress: A review. Journal of Agricultural Science and Technology B 9: 305–315.

Shelley, C. and A. Lovatelli. 2011. Mud Crab Aquaculture: A Practical Manual. FAO, Rome, Italy. 78 pp.

Slater, M., E. Fricke, M. Weiss, A. Rebelein, M. Bögner, M. Preece and C. Radford. 2020. The impact of aquaculture soundscapes on whiteleg shrimp Litopenaeus vannamei and Atlantic salmon Salmo salar. Aquaculture Environment Interactions 12: 167–177.

Smith, T.A. and J. Rigby. 2022. Underwater radiated noise from marine vessels: A review of noise reduction methods and technology. Ocean Engineering 266: 112863. DOI: 10.1016/j.oceaneng.2022.112863.

Solan, M., C. Hauton, J.A. Godbold, C.L. Wood, T.G. Leighton and P. White. 2016. Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Scientific Reports 6: 20540. DOI: 10.1038/srep20540.

Solé, M., M. Lenoir, M. Durfort, M. López-Bejar, A. Lombarte and M. André. 2013. Ultrastructural damage of Loligo vulgaris and Illex coindetii statocysts after low frequency sound exposure. PLoS ONE 8(10): e78825. DOI: 10.1371/journal.pone.0078825.

Staaterman, E., A.J. Gallagher, P.E. Holder, C.H. Reid, A.H. Altieri, M.B. Ogburn, J.L. Rummer and S.J. Cooke. 2020. Exposure to boat noise in the field yields minimal stress response in wild reef fish. Aquatic Biology 29: 93–103.

Tang, L.S., A.L. Taylor, A. Rinberg and E. Marder. 2012. Robustness of a rhythmic circuit to short- and long-term temperature changes. Journal of Neuroscience 32: 10075–10085.

Tidau, S. and M. Briffa. 2016. Review on behavioral impacts of aquatic noise on crustaceans. Proceedings of Meetings on Acoustics 27(1): 010028. DOI: 10.1121/2.0000302.

Tsai, M.L., W.P. Hsu and T.C. Chen. 2019. Evaluation of suitable temperature range for post-harvest processing of mud crabs through cardiac performance. Aquaculture Research 50: 3711−3719.

Thompson, R.F. and W.A. Spencer. 1966. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychological Review 73: 16–43.

Vikas, M. and G.S. Dwarakish. 2015. Coastal pollution: A review. Aquatic Procedia 4: 381–388.

Wale, M.A., S.D. Simpson and A.N. Radford. 2013. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise. Biology Letters 9(2): 20121194. DOI: 10.1098/rsbl.2012.1194.

Weineck, K., A.J. Ray, L.J. Fleckenstein, M. Medley, N. Dzubuk, E. Piana and R.L. Cooper. 2018. Physiological changes as a measure of crustacean welfare under different standardized stunning techniques: Cooling and electroshock. Animal (Basel) 8(9): 158. DOI: 10.3390/ani8090158.

Wilson, L., M.K. Pine and C.A. Radford. 2022. Small recreational boats: a ubiquitous source of sound pollution in shallow coastal habitats. Marine Pollution Bulletin 174: 113295. DOI: 10.1016/j.marpolbul.2021.113295.