Impact of Spray Drying Encapsulation on Metabolite Profile and Quality of Fish Oil Products

Main Article Content

Hilda Novianty
Ayu Septi Anggraeni
Indrawati Dian Utami
Retno Ayu Kurniasih
Lucky Prabowo Miftachul Alam
Selvia Oktaviyani
Diah Radini Noerdjito
Suratno Suratno

Abstract

Encapsulation is one of the techniques to preserve fish oil compounds from deterioration and degeneration caused by oxidation. In the encapsulation process, the matrix wall protects fish oil substances, particularly when using the spray-drying method. This mechanism can induce changes in metabolite profiles while maintaining the quality of fish oil. In this study, metabolite changes were analyzed using high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS), alongside measurements of free fatty acids, acid values, and scanning electron microscope (SEM). The results showed distinct clusters between encapsulated and raw fish oil, with 75 metabolites identified, of which 35 were considered variables important in projection (VIP) metabolites. Statistical analysis revealed significant changes in 63 metabolites. Principal component analysis (PCA) clearly distinguished raw from encapsulated fish oil across a broad range, while the heatmap showed that most metabolites significantly differed among the treatment groups. PLS-DA identified 35 VIP metabolites, of which (1S,4S)-4-hydroxy-3-oxocyclohexanecarboxylic acid showed the highest VIP score. The VIP metabolites included 15 types of lipid derivatives, two amino acid derivatives, two carboxylic acid derivatives, two carbohydrate derivatives, two phenolic compounds, two aromatic compounds, and several minor substances. Additional findings showed a significant (p<0.05) decline in both free fatty acid and acid value levels for encapsulated fish oil, along with the formation of spherical encapsulated powder particles. The combination of HPLC-HRMS-based metabolomics with encapsulation analysis remains underexplored, and this study provides valuable insights into the encapsulation process for fish oil products.

Article Details

How to Cite
Novianty, H., Anggraeni, A. S. ., Utami, I. D. ., Kurniasih, R. A., Alam, L. P. M. ., Oktaviyani, S. ., Noerdjito, D. R. ., & Suratno, S. (2025). Impact of Spray Drying Encapsulation on Metabolite Profile and Quality of Fish Oil Products. Journal of Fisheries and Environment, 49(2), 177–190. https://doi.org/10.34044/j.jfe.2025.49.2.13
Section
Research Article

References

Association of Official Analytical Chemists (AOAC) International. 2005. Official Methods of Analysis of AOAC INTERNATIONAL. https://www.researchgate.net/publication/292783651. Cited 2 Aug 2024.

Aitta, E., A. Damerau, A. Marsol-Vall, M. Fabritius, L. Pajunen, M. Kortesniemi and B. Yang. 2023. Enzyme-assisted aqueous extraction of fish oil from Baltic herring (Clupea harengus membras) with special reference to emulsion-formation, extraction efficiency, and composition of crude oil. Food Chemistry 424: 1–13. DOI: 10.1016/j.foodchem.2023.136381.

Ayeloja, A.A., W.A. Jimoh and A.O. Garuba. 2024a. Nutritional quality of fish oil extracted from selected freshwater fish species. Food Chemistry Advances 4: 2–7. DOI: 10.1016/j.focha.2024.100720.

Ayeloja, A.A., W.A. Jimoh and T.V. Oyewole. 2024b. Nutritional quality of fish oil extracted from selected marine fish species. Food and Humanity 2: 1–6. DOI: 10.1016/j.foohum.2023.100212.

Ayuni, D., J.N.W. Karyadi, A.D. Saputro and H. Yoshii. 2021. Effect of antioxidant and pro-oxidant on the stability of microencapsulated squalene by spray drying. agriTECH 41(1): 49–57. DOI: 10.22146/agritech.52741.

Bakry, A.M., S. Abbas, B. Ali, H. Majeed, M.Y. Abouelwafa, A. Mousa and L. Liang. 2015. Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety 15(1): 143–182. DOI: 10.1111/1541-4337.12179.

Bakry, A.M., Z. Fang, Y. Ni, H. Cheng, Y.Q. Chen and L. Liang. 2016. Stability of tuna oil and tuna oil/peppermint oil blend microencapsulated using whey protein isolate in combination with carboxymethyl cellulose or pullulan. Food Hydrocolloids 60: 559–571. DOI: 10.1016/j.foodhyd.2016.04.026.

Buist, P.H. 2010. Natural products structural diversity-i secondary metabolites: Organization and biosynthesis. In: Comprehensive Natural Products II (eds. H. Liu and L. Mander), pp. 5–33. Elsevier Ltd., Canada.

Cao, Y., Q. Gao, X. Li, Y. Zhou, S. Dong, Y. Wang and Z. Dai. 2022. Integrated analysis of metabolomics and transcriptomics for assessing effects of fish meal and fish oil replacement on the metabolism of rainbow trout (Oncorhynchus mykiss). Frontiers in Marine Science 9: 1–17. DOI: 10.3389/fmars.2022.843637.

Díaz-Montes, E. 2023. Wall materials for encapsulating bioactive compounds via spray-drying: A review. Polymers 15: 1–26. DOI: 10.3390/polym15122659.

Djamaludin, H., T.D. Sulistiyati, A. Chamidah, P. Nurashikin, M. Roifah, H. Notonegoro and P.R. Ferdian. 2023. Quality and fatty acid profiles of fish oil from tuna by-products extracted using a dry-rendering method. Biodiversitas 24(11): 6100–6106. DOI: 10.13057/biodiv/d241131.

El-Messery, T.M., U. Altuntas, G. Altin and B. Özçelik. 2020. The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocolloids 106: 1–9. DOI: 10.1016/j.foodhyd.2020.105890.

Emwas, A.H.M., N. Al-Rifai, K. Szczepski, S. Alsuhaymi, S. Rayyan, H. Almahasheer, M. Jaremko, L. Brennan and J.I. Lachowicz. 2021. You are what you eat: Application of metabolomics approaches to advance nutrition research. Foods 10: 1–20. DOI: 10.3390/foods10061249.

Food and Agriculture Organization of the United Nations (FAO). 2017. Standard for fish oil. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B329-2017%252FCXS_329e.pdf. Cited 4 Aug 2024.

Fernández-Cuesta, A., L. León, L.Velasco and R. De la Rosa. 2013. Changes in squalene and sterols associated with olive maturation. Food Research International 54: 1885–1889. DOI: 10.1016/j.foodres.2013.07.049.

Future Market Insight (FMI). 2023. Fish oil market. https://www.futuremarketinsights.com/. Cited 12 Oct 2023.

Hidayah, N., A. Rohman, M. Mustafidah and Irnawati. 2022. Physicochemical characterization and fatty acid profiles of fish oil from milkfish (Chanos chanos F.). Food Research 6(2): 265–270. DOI: 10.26656/fr.2017.6(2).222.

Irnawati, I., A. Windarsih, L.O.M.H. Nadia, A. Rohman and W.O. Fasrida. 2024. Quantification and classification of fatty acids in marine fish oil from Southeast Sulawesi using gas chromatography and chemometrics. Journal of Applied Pharmaceutical Science 14(3): 162–169. DOI: 10.7324/JAPS.2024.159140.

Isha, A., N.A. Yusof, R. Osman, M.Y. Wong and S.N.A. Abdullah. 2020. NMR-based metabolomics reveals effect of Ganoderma boninense infection on oil palm leaf at 30 days post-infection. Plant OMICS 13(1): 15–20. DOI: 10.21475/POJ.13.01.20.P2071.

Kumar, L.R.G., N.S. Chatterjee, C.S. Tejpal, K.V. Vishnu, K.K. Anas, K.K. Asha, R. Anandan and S. Mathew. 2017. Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. International Journal of Biological Macromolecules 104: 1986–1995. DOI: 10.1016/j.ijbiomac.2017.03.114.

Kumar, L.R.G., H.S. Kumar, C.S. Tejpal, K.K. Anas, B.B. Nayak, K. Sarika, S.S. Greeshma, N.S. Chatterjee, S. Mathew and C.N. Ravishankar. 2021. Exploring the physical and quality attributes of muffins incorporated with microencapsulated squalene as a functional food additive. Journal of Food Science and Technology 58(12): 4674–4684. DOI: 10.1007/s13197-020-04955-9.

Kuvendziev, S., K. Lisichkov, Z. Zekovi, M. Marinkovski and Z.H. Musliu. 2018. Supercritical fluid extraction of fish oil from common carp ( Cyprinus carpio L .) tissues. The Journal of Supercritical Fluids 133: 528–534. DOI: 10.1016/j.supflu.2017.11.02.

Latip, L.D., W. Zzaman and T.A.Yang. 2014. Application of response surface methodology to optimize the extraction of asian catfish (Clarias batrachus) oil using superheated steam treatment. Food Science and Technology 2(6): 69–76. DOI: 10.13189/fst.2014.020601.

Lee, S.C., D. Surendhiran and B.S. Chun. 2022. Extraction and encapsulation of squalene-rich cod liver oil using a supercritical process for enhanced oxidative stability. Journal of CO2 Utilization 62: 1–12. DOI: 10.1016/j.jcou.2022.102104.

Li, R., Z. Sun, Y. Zhao, L. Li, X. Yang, J. Cen, S. Chen, C. Li and Y. Wang. 2021. Application of UHPLC-Q-TOF-MS/MS metabolomics approach to investigate the taste and nutrition changes in tilapia fillets treated with different thermal processing methods. Food Chemistry 356: 1–11. DOI: 10.1016/j.foodchem.2021.129737.

Nisbett, K.E., L.F. Vendruscolo and G.F. Koob. 2024. Indulging curiosity: preliminary evidence of an anxiolytic-like effect of castor oil and ricinoleic acid. Nutrients 16: 1–9. DOI: 10.3390/nu16101527.

Özyurt, G., A. Şimşek, M. Etyemez and A. Polat. 2013. Fatty acid composition and oxidative stability of fish oil products in Turkish retail market. Journal of Aquatic Food Product Technology 22(3): 322–329. DOI: 10.1080/10498850.2011.644882.

Rahmani-Manglano, N.E., M. Tirado-Delgado, P.J. García-Moreno, A. Guadix and E.M. Guadix. 2022. Influence of emulsifier type and encapsulating agent on the in vitro digestion of fish oil-loaded microcapsules produced by spray-drying. Food Chemistry 392: 1–9. DOI: 10.1016/j.foodchem.2022.133257.

Ramos, F. de M., V.S. Júnior and A.S. Prata. 2021. Impact of vacuum spray drying on encapsulation of fish oil: oxidative stability and encapsulation efficiency. Food Research International 143: 1–10. DOI: 10.1016/j.foodres.2021.110283.

Rehman, A., Q. Tong, S.M. Jafari, et al. 2021. Spray dried nanoemulsions loaded with curcumin, resveratrol, and borage seed oil: The role of two different modified starches as encapsulating materials. International Journal of Biological Macromolecules 186: 820–828. DOI: 10.1016/j.ijbiomac.2021.07.076.

Song, G., Z. Dai, Q. Shen, X. Peng and M. Zhang. 2017. Analysis of the changes in volatile compound and fatty acid profiles of fish oil in chemical refining process. European Journal of Lipid Science and Technology 120(2): 1–8. DOI: 10.1002/ejlt.201700219.

Song, R., X. Wang, S. Deng and N. Tao. 2022. Lipidomic analysis and triglyceride profiles of fish oil: Preparation through silica gel column and enzymatic treatment. Food Research International 162: 26–33. DOI: 10.1016/j.foodres.2022.112100.

Sultana, A., S. Adachi and H. Yoshii. 2023. Encapsulation of fish oil and essential fatty acids by spray drying. Sustainable Food Technology 1(6): 1–10. DOI: 10.1039/d3fb00099k.

Tsado, D.B., M.M. Ndamitso and A.I. Ajai. 2018. Determination of physicochemical properties and fatty acid profile of oil extract of blighia sapida fruit from selected areas in Niger State, Nigeria. Nigerian Journal of Chemical Research 23(1): 21–34.

Utpott, M., E. Rodrigues, A. de O. Rios, G.D. Mercali and S.H. Flôres. 2022. Metabolomics: an analytical technique for food processing evaluation. Food Chemistry 366: 1–10. DOI: 10.1016/j.foodchem.2021.130685.

Venugopalan, V.K., L.R. Gopakumar, A.K. Kumaran, N.S. Chatterjee, V. Soman, S. Peeralil, S. Mathew, D.J. McClements and R.C. Nagarajarao. 2021. Encapsulation and protection of omega-3-rich fish oils using food-grade delivery systems. Foods 10: 1–21. DOI: 10.3390/foods10071566.

Wen, X., Y. Hu, X. Zhang, X. Wei, T. Wang and S. Yin. 2019. Integrated application of multi-omics provides insights into cold stress responses in pufferfish Takifugu fasciatus. BMC Genomics 20(1): 1–15. DOI: 10.1186/s12864-019-5915-7.

Windarsih, A., Suratno, H.D. Warmiko, A.W. Indrianingsih, A. Rohman and Y.I. Ulumuddin. 2022. Untargeted metabolomics and proteomics approach using liquid chromatography-orbitrap high-resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chemistry 386: 1–9. DOI: 10.1016/j.foodchem.2022.132856.

Yang, C., J. Zhang, R. Zhong, Z. Guo, Q. Wang and Z. Zheng. 2020. Characterization of metabolomic differences in peanut worm Sipunculus nudus between breeding and nonbreeding seasons. Aquaculture Reports 16: 1–8. DOI: 10.1016/j.aqrep.2019.100271.

Zhang, Y., Q. Sun, S. Liu, S. Wei, Q. Xia, H. Ji, C. Deng and J. Hao. 2021. Extraction of fish oil from fish heads using ultra-high pressure pre-treatment prior to enzymatic hydrolysis. Innovative Food Science and Emerging Technologies 70: 1–11. DOI: 10.1016/j.ifset.2021.102670.