Photosynthetic Efficiency and Survival of Tissue-Cultured Eucheuma denticulatum Microplantlets under Varying Transport Conditions

Main Article Content

Jose Leo Fortellano
Iris Ann Borlongan

Abstract

The cultivation of eucheumatoids (Eucheuma and Kappaphycus) is increasingly threatened by pests, diseases, climate change, and biosecurity concerns, leading to declining yields. Tissue culture offers a more resilient propagation approach; however, the success of outplanting depends on minimizing stress and mortality during the transfer of cultivars. This study evaluated the effects of different transport treatments on the photosystem II (PSII) photochemical efficiency and survival of tissue-cultured Eucheuma denticulatum microplantlets. An 8-h transport simulation followed by a 7-day laboratory culture was conducted to evaluate the effectiveness of various packaging and storage conditions. After 8 h, the maximum quantum yields (Fv/Fm) of transport treatments 1 (0.53±0.08) and 2 (0.51±0.11), in which explants were placed in plastic bags containing 250 mL of seawater stored in a styrofoam box without and with ice, respectively, did not significantly differ from their initial values (0.58±0.11 and 0.54±0.08, respectively). All explants in these treatments remained viable after 7 days. In contrast, treatments 3 (0.33±0.11) and 4 (0.44±0.09), where explants were wrapped in moistened muslin cloths and stored in a styrofoam box without and with ice, respectively, showed significantly lower Fv/Fm values compared with their initial states (0.64±0.09 and 0.63±0.11, respectively), with treatment 3 resulting in complete die-off (0.01±0.06) after 7 days. These findings suggest that transporting microplantlets in seawater-filled plastic bags, especially with ice insulation, is the most effective method for maintaining photochemical efficiency and viability during transport.

Article Details

How to Cite
Fortellano, J. L. ., & Borlongan, I. A. (2025). Photosynthetic Efficiency and Survival of Tissue-Cultured Eucheuma denticulatum Microplantlets under Varying Transport Conditions. Journal of Fisheries and Environment, 49(3), 72–82. retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/268293
Section
Research Article

References

Allakhverdiev, S.I., V.D. Kreslavski, V.V. Klimov, D.A. Los, R. Carpentier and P. Mohanty. 2008. Heat stress: An overview of molecular responses in photosynthesis. Photosynthesis Research 98: 541–550. DOI: 10.1007/s11120-008-9331-0.

Ali, M.K., A.T. Critchley and A.Q. Hurtado. 2020. Micropropagation and sea-based nursery growth of selected commercial Kappaphycus species in Penang, Malaysia. Journal of Applied Phycology 32: 1301–1309. DOI: 10.1007/s10811-019-02003-4.

Borlongan, I., G. Gerung, G. Nishihara and R. Terada. 2016. Light and temperature effects on photosynthetic activity of Eucheuma denticulatum and Kappaphycus alvarezii (brown and green color morphotypes) from Sulawesi Utara, Indonesia. Phycological Research 65: 69–79. DOI: 10.1111/pre.12155.

Borlongan, I.A., G.S. Gerung, S. Kawaguchi, G.N. Nishihara and R. Terada. 2017. Thermal and PAR effects on the photosynthesis of Eucheuma denticulatum and Kappaphycus striatus (so-called Sacol strain) cultivated in shallow bottom of Bali, Indonesia. Journal of Applied Phycology 29: 395–404. DOI: 10.1007/s10811-016-0956-7.

Ciaramella, M. 2022. Best practices for maintaining quality in seaweed. NOAA Sea Grant Seaweed Guide. https://seagrant.sunysb.edu/Images/Uploads/PDFs/rapidresponse/Seafood-Guide-Seaweed-II.pdf. Cited 27 May 2024.

Dawes, C.J. and E.W. Koch. 1991. Branch, micropropagule and tissue culture of the red algae Eucheuma denticulatum and Kappaphycus alvarezii farmed in the Philippines. Journal of Applied Phycology 3: 247–257. DOI: 10.1007/bf00003583.

Department of Agriculture Bureau of Fisheries and Aquatic Resources (DA-BFAR). 2022. Philippine seaweed industry roadmap 2022–2026. https://www.da.gov.ph/wp-content/uploads/2023/05/Philippine-Seaweed-Industry-Roadmap.pdf. Cited 23 Apr 2024.

Department of Agriculture Bureau of Fisheries and Aquatic Resources (DA-BFAR). 2024. 2023 Philippine Fisheries Profile. https://www.bfar.da.gov.ph/wp-content/uploads/2025/02/2023-Philippine-Fisheries-Profile.pdf. Cited 5 May 2025.

Doğru, A. 2021. Effects of heat stress on photosystem II activity and antioxidant enzymes in two maize cultivars. Planta 253: 85. DOI: 10.1007/s00425-021-03611-6.

Dutta, S., S. Mohanty and B.C. Tripathy. 2009. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology 150: 1050–1061. DOI: 10.1104/pp.109.137265.

Eggert, A. 2012. Seaweed responses to temperature. In: Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization (eds. C. Wiencke and K. Bischof), pp. 47–66. Springer, Berlin, Germany.

Eismann, A.I., R.P. Reis, A.F. da Silva and D.N. Cavalcanti. 2020. Ulva spp. carotenoids: responses to environmental conditions. Algal Research 48: 101916. DOI: 10.1016/j.algal.2020.101916.

Emata, A., G. Hilomen-Garcia and L. Garcia. 2000. Survival of captive milkfish Chanos chanos Forsskål broodstock subjected to handling and transport. Aquaculture Research 31: 575–583. DOI: 10.1046/j.1365-2109.2000.00475.x.

Faisan, J.P. and A.Q. Hurtado. 2024. Seaweed health problems: major limiting factors affecting the sustainability of the seaweed aquaculture industry in the Philippines. In: Tropical Phyconomy Coalition Development: Focus on Eucheumatoid Seaweeds, Volume 11 (eds. A.T. Critchley, A.Q. Hurtado and I.C. Neish), pp. 255–262. Springer International Publishing, Cham, Switzerland.

Flores-Molina, M.R., D. Thomas, C. Lovazzano, A. Núñez, J. Zapata, M. Kumar, J.A. Correa and L. Contreras-Porcia. 2014. Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance. Aquatic Botany 113: 90–99. DOI: 10.1016/j.aquabot.2013.11.004.

Ganzon-Fortes, E.T., R. Azanza-Corrales and T. Aliaza. 1993. Comparison of photosynthetic responses of healthy and ‘diseased’ Kappaphycus alvarezii (Doty) Doty using P vs I curve. Botanica Marina 36: 503–507. DOI: 10.1515/botm.1993.36.6.503.

Gao, S., S. Shen, G. Wang, J. Niu, A. Lin and G. Pan. 2011. PSI-driven cyclic electron flow allows intertidal macroalgae Ulva sp. (Chlorophyta) to survive in desiccated conditions. Plant and Cell Physiology 52: 885–893. DOI: 10.1093/pcp/pcr038.

Gonzaga, S.M.C., L.A.R. Hinaloc and M.Y. Roleda. 2025. Conservation of eucheumatoid genetic resources through the establishment of ex situ gene banks. Journal of Applied Phycology 37: 2649–2662. DOI: 10.1007/s10811-025-03523-y.

Hinaloc, L.A. and M.Y. Roleda. 2021. Phenotypic diversity, growth and sexual differentiation in the progeny of wild Kappaphycus alvarezii (Gigartinales, Florideophyceae). Phycologia 60: 547–557. DOI: 10.1080/00318884.2021.1946307.

Hurd, C.L., P.J. Harrison, K. Bischof and C.S. Lobban. 2014. Seaweed mariculture. In: Seaweed Ecology and Physiology (eds. C.L. Hurd, P.J. Harrison, K. Bischof and C.S. Lobban), pp. 413–439. Cambridge University Press, Cambridge, UK.

Hurtado, A.Q., D.A. Yunque, K. Tibubos and A.T. Critchley. 2009. Use of Acadian marine plant extract powder from Ascophyllum nodosum in tissue culture of Kappaphycus varieties. Journal of Applied Phycology 21(6): 633–639. DOI: 10.1007/s10811-008-9395-4.

Hurtado, A.Q., I.C. Neish and A.T. Critchley. 2015. Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. Journal of Applied Phycology 27: 1945–1961. DOI: 10.1007/s10811-014-0510-4.

Jiksing, C., M.M. Ongkudon, V.Y. Thien, K.F. Rodrigues and W.T.L. Yong. 2022. Recent advances in seaweed seedling production: a review of eucheumatoids and other valuable seaweeds. Algae 37(2): 105–121. DOI: 10.4490/algae.2022.37.5.11.

Kambey, C.S.B., P.E. Lim, E.J. Cottier-Cook, I. Campbell, S.W. Poong and A. Kassim. 2021. Standard operating procedure of eucheumatoid cultivation using biosecurity-based approach. Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur. https://www.globalseaweed.org/wp-content/uploads/2021/11/Standard-Operating-Procedure_GSS-UM.pdf. Cited 24 Apr 2024.

Karsten, U. 2012. Seaweed acclimation to salinity and desiccation stress. In: Seaweed Biology – Ecological Studies, Volume 219 (eds. C. Wiencke and K. Bischof), pp. 87–107. Springer, Berlin, Heidelberg, Germany.

Kumar, Y.N., S.W. Poong, C. Gachon, J. Brodie, A. Sade and P.E. Lim. 2020. Impact of elevated temperature on the physiological and biochemical responses of Kappaphycus alvarezii (Rhodophyta). PLOS ONE 15: e0239097. DOI: 10.1371/journal.pone.0239097.

Largo, D.B., K. Fukami and T. Nishijima. 1995. Laboratory-induced development of the ice-ice disease of the farmed red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). Journal of Applied Phycology 7: 539–543. DOI: 10.1007/BF00003940.

Mtolera, M.S.P., J. Collén, M. Pedersén, A. Ekdahl, K. Abrahamsson and A.K. Semesi. 1996. Stress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. European Journal of Phycology 31: 89–95. DOI: 10.1080/09670269600651241.

R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Cited 25 May 2024.

Reddy, C.R., B. Jha, Y. Fujita and M. Ohno. 2008. Seaweed micropropagation techniques and their potentials: An overview. Journal of Applied Phycology 20: 609–617. DOI: 10.1007/s10811-007-9205-4.

Salvucci, M.E. and S.J. Crafts-Brandner. 2004. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology 134: 1460–1470. DOI: 10.1104/pp.103.038323.

Sato, Y., D. Saito, G.N. Nishihara and R. Terada. 2022. Effects of different stressors on the PSII photochemical efficiency and application to sporeling transportation in cultured young sporophytes of Undaria pinnatifida. Journal of Applied Phycology 34: 551–563. DOI: 10.1007/s10811-021-02616-8.

Shindo, A., G.N. Nishihara, I.A. Borlongan and R. Terada. 2022. The effects of desiccation and salinity gradients on the PSII photochemical efficiency of a subtidal brown alga, Saccharina japonica (Laminariales) from Hokkaido, Japan. Phycological Research 70: 89–96. DOI: 10.1111/pre.12481.

Terada, R., K. Matsuda and G.N. Nishihara. 2024. Optimizing cultivation and shipping environments for an edible green alga, Caulerpa chemnitzia var. laetevirens (Bryopsidales) from Japan: Effects of temperature, irradiance, desiccation and salinity on photochemical efficiency. Phycological Research 72: 79–91. DOI: 10.1111/pre.12539.

Tibubos, K.R., A.Q. Hurtado and A.T. Critchley. 2017. Direct formation of axes in new plantlets of Kappaphycus alvarezii (Doty) Doty, as influenced by the use of AMPEP K⁺, spindle inhibitors, and plant growth hormones. Journal of Applied Phycology 29(5): 2345–2349. DOI: 10.1007/s10811-016-0988-z.

Valderrama, D., J. Cai, N. Hishamunda and N. Ridler. 2013. Social and economic dimensions of carrageenan seaweed farming. FAO Fisheries and Aquaculture Technical Paper No. 580. FAO, Rome. https://www.fao.org/4/i3344e/i3344e.pdf. Cited 24 Apr 2024.

Ward, G.M., J.P. Faisan, E.J. Cottier-Cook, et al. 2020. A review of reported seaweed diseases and pests in aquaculture in Asia. Journal of the World Aquaculture Society 51(4): 815–828. DOI: 10.1111/jwas.12649.

Ward, G., C. Kambey, J.P. Faisan Jr., P.L. Tan, C. Daumich, I. Matoju, G. Stentiford, D. Bass, P.E. Lim, J. Brodie and S.W. Poong. 2022. Ice-ice disease: An environmentally and microbiologically driven syndrome in tropical seaweed aquaculture. Reviews in Aquaculture 14(1): 414–439. DOI: 10.1111/raq.12606.

Wernberg, T., S. Bennett, R.C. Babcock, et al. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295): 169–172. DOI: 10.1126/science.aad8745.

Yong, W.T., S.H. Ting, Y.S. Yong, V.Y. Thien, S.H. Wong, W.L. Chin, K.F. Rodrigues and A. Anton. 2013. Optimization of culture conditions for the direct regeneration of Kappaphycus alvarezii (Rhodophyta, Solieriaceae). Journal of Applied Phycology 26: 1597–1606. DOI: 10.1007/s10811-013-0191-4.

Zuo, Z., Y. Liu, Y. Wang, Y. Li, J. Zhang, Y. Zhang, Y. Wang, Y. Liu and T. Liu. 2023. Effects of high temperature on photosynthetic performance and transcriptomic responses in Ulva prolifera. Algal Research 69: 103201. DOI: 10.1016/j.algal.2023.103201.