Sex-Associated Microsatellite Marker for Neomale Identification and Histological Analysis of Gonadal Maturation in Ompok bimaculatus

Main Article Content

Kedsirin Ruttajorn
Thanapon Yooyen
Akkanee Pewhom
Thaweedet Chainapong
Jamjun Pechsiri

Abstract

This study aimed to develop sex-associated microsatellite markers for identifying neomales in Ompok bimaculatus and to characterize their gonadal structures histologically. Newly hatched larvae were treated with 17α-methyltestosterone (MT), and MT-treated fish were sampled up to 180 days post-hatching. Gonadal tissues were examined histologically, and caudal fins from ten males, ten females, and ten MT-treated individuals were used for DNA extraction. MT-treated fish showed smaller, translucent testes with markedly reduced spermatozoa density. A novel sex-associated microsatellite marker was identified, characterized by a dinucleotide (CA)n repeat: (CA)₁₉ in males and (CA)₁₅ in females and neomales, indicating sex linkage. These findings support the molecular identification of neomales and provide a foundation for developing reliable markers for sex determination and controlled breeding in O. bimaculatus.

Article Details

How to Cite
Ruttajorn, K., Yooyen, T. ., Pewhom, A. ., Chainapong, T. ., & Pechsiri, J. (2025). Sex-Associated Microsatellite Marker for Neomale Identification and Histological Analysis of Gonadal Maturation in Ompok bimaculatus. Journal of Fisheries and Environment, 49(3), 62–71. retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/268663
Section
Research Article
Author Biography

Jamjun Pechsiri, Program in Modern Agriculture, Faculty of Technology and Community Development, Thaksin University, Phattalung, Thailand

-

References

Ankley, G.T., K.M. Jensen, M.D. Kahl, J.J. Korte and E.A. Makynen. 2001. Description and

evaluation of a short-term reproduction test with the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 20(6): 1276–1290. DOI: 10.1002/etc.5620200616.

Beier, S., T. Thiel, T. Münch, U. Scholz and M. Mascher. 2017. MISA-web: A web server for microsatellite prediction. Bioinformatics 33: 2583–2585. DOI: 10.1093/bioinformatics/btx198.

Biswas, P., A.K. Jena and S.K. Singh. 2023. Conservation aquaculture of Ompok bimaculatus (butter catfish), a near threatened catfish in India. Aquaculture and Fisheries 8: 1–17. DOI: 10.1016/j.aaf.2022.04.007.

Brown, M.S., B.S. Evans and L.O.B. Afonso. 2021. Genotypic female Atlantic salmon (Salmo salar) immersed in an exogenous androgen overexpress testicular-related genes and develop as phenotypic males. Aquaculture 545: 737216. DOI: 10.1016/j.aquaculture.2021.737216.

Chiang, E.F., C.I. Pai, M. Wyatt, Y.L. Yan, J. Postlethwait and B. Chung, 2001. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites, Developmental Biology 231: 149–163. DOI: 10.1006/dbio.2000.0129.

Colihueque, N. and M. Parraguez. 2024. Assessing the effectiveness of sex linked molecular markers to identify neomale breeders for the production of all female progenies of rainbow trout. Marine Biotechnology 26: 199–204. DOI: 10.1007/s10126-024-10288-x.

Dhar, R., K. Pethusamy, S. Singh, et al. 2019. Draft genome of Ompok bimaculatus (Pabda fish). BMC Research Notes 12: 825. DOI: 10.1186/s13104-019-4867-y.

Grabherr, M.G., B.J. Haas, M. Yassour, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7): 644–652. DOI: 10.1038/nbt.1883.

Gupta, S. 2015. An Overview on feeding habit, reproductive biology and induced breeding of Ompok bimaculatus (Bloch, 1794). European Journal of Biological Sciences 7(4): 147–153. DOI: 10.5829/idosi.ejbs.2015.7.04.95163.

Humason, G.L. 1979. Animal Tissue Techniques, 4th ed. W.H. Freeman and Company, San Francisco, USA. 661 pp.

International Union for Conservation of Nature 2014. IUCN Red List of Threatened Species. Version, 2014.3. http://www.iucnredlist.org. Cited 25 Mar 2025.

Li, H., Q. Zhu, R. Chen, M. Liu. and D. Xu. 2021. Identification and characterization of dimorphic expression of sex-related genes in rock bream, a fish with multiple sex chromosomes. Frontiers in Genetics 29(12): 791179. DOI: 10.3389/fgene.2021.791179.

Liu, S., Y. Chen, T. Li, et al. 2023. Effects of 17-methyltestosterone on the transcriptome and sex hormones in the brain of Gobiocypris rarus. International Journal of Molecular Sciences 24(4): 3571. DOI: 10.3390/ijms24043571.

Nagahama, Y., T. Chakraborty, B. Paul-Prasanth, K. Ohta and M. Nakamura. 2021. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiological Reviews 101: 1237–1308. DOI: 10.1152/physrev.00044.2019.

Paul, B.N., S. Bhowmick, S. Chanda, N. Sridhar and S.S. Giri. 2018. Nutrient profile of five freshwater fish species. SAARC Journal of Agriculture 16(2): 25–41. DOI: 10.3329/sja.v16i2.40256.

Raghuveer, K. and B. Senthilkumaran. 2010. Isolation of sox9 duplicates in catfish: localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of sox9 in testicular slices, Reproduction 140: 477–487. DOI: 10.1530/rep-10-0200.

Rahman, M.R., R.I. Sarder, A.A. Nishat, R. Islam and A.H.M. Kohinoor. 2021. Induction of meiotic and mitotic gynogenesis in silver barb (Barbonymus gonionotus) through cold shock treatment. Aquaculture International 29: 2161–2179. DOI: 10.1007/s10499-021-00744-z

Ruan, W.J. and M.D. Lai. 2007. Actin, a reliable marker of internal control?. Clinica Chimica Acta 385(1–2): 1–5. DOI: 10.1016/j.cca.2007.07.003.

Shen, Z.G., Q.X. Fan, W. Yang, Y.L. Zhang and H.P. Wang. 2015. Effects of 17α-methyltestosterone and aromatase inhibitor letrozole on sex reversal, gonadal structure, and growth in yellow catfish Pelteobagrus fulvidraco. The Biological Bulletin 228: 108–117. DOI: 10.1086/BBLv228n2p108.

Siddiqua, K.A., M.S. Islam, M.G. Hussain and A.T.A. Ahmed. 2000. A histological study of the spermatogenesis in Ompok pabda (Hamilton-Buchanan 1822). Bangladesh Journal of Fisheries Research 4(2): 185–189.

Sultana, N., M. Khan, M. Hossain and M.S. Alam. 2020. Allelic segregation of sex-linked microsatellite markers in Nile tilapia (Oreochromis niloticus) and validation of inheritance in YY population. Aquaculture Research 51: 1759–2167. DOI: 10.1111/are.14543.

Webster, K.A., U. Schach, A. Ordaz, J.S. Steinfeld, B.W. Draper and K.R. Siegfried. 2017. Dmrt1 is necessary for male sexual development in zebrafish. Developmental Biology 422(1): 33–46. DOI: 10.1016/j.ydbio.2016.12.008

Wei, L., C. Yang, W. Tao and D. Wang. 2016. Genome-wide identification and transcriptomebased expression profiling of the sox gene family in the Nile tilapia (Oreochromis niloticus), International Journal of Molecular Sciences 17: 270. DOI: 10.3390/ijms17030270

Xie, D.K., H.P. Wang, R. Othman, H. Yao, P. O’Bryant and D. Rapp. 2025. Expression of sex-related genes and effects of dmrt1 siRNA-silencing on sex differentiation in juvenile yellow perch. Aquaculture Reports 42: 102791. DOI: 10.1016/j.aqrep.2025.102791.

Xu, D., B. Lou, S. Li, X. Sun, W. Zhan, R. Chen and G. Mao. 2015. A novel sex-linked microsatellite marker for molecular sexing in rock bream fish Oplegnathus fasciatus. Biochemical Systematics and Ecology 62: 66–68. DOI: 10.1016/j.bse.2015.07.028.

Yamaguchi, A., K.H. Lee, H. Fujimoto, K. Kadomura, S. Yasumoto and M. Matsuyama. 2006. Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 1(1): 59–68. DOI: 10.1016/j.cbd.2005.08.003.