Effects of Stress and Cortisol on the Brain Behavioral Functions: Mood and Memory

Authors

  • Thaneeya Hawiset School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
  • Prachak Inkeaw School of Science, Mae Fah Luang University, Chiang Rai, Thailand

Keywords:

Cortisol; Stress; Brain; Mood; Memory

Abstract

Cortisol, also well-known as the stress hormone, has various effects on physiological functions of the body systems including the nervous, cardiovascular, musculoskeletal, respiratory, endocrine, and urinary systems. The nervous system has an important role in the regulation of cortisol levels for controlling normal body functions. Cortisol also plays crucial roles in the metabolic control of body functions, stress reaction, neuronal circuit formation, neurotransmitter modulation, and regulation of mood and memory. This review article summarizes new information of the effects of cortisol on behavioral brain functions, mood and memory, and provides information on stress-induced cortisol secretion and actions of cortisol on various organs, especially the brain. This review also discusses the effects of abnormal cortisol levels on cognitive and mood disorders, as well as the abnormality of cortisol levels which increases risks of the neuropsychological and neurodegenerative diseases. Finally, the article provides information on strategies to relieve stress for improving mood and memory.

References

1. Murray C, Lopez A. World Health Report 2002: Reducing risks, promoting healthy life. Geneva, Switzerland: World Health Organization. Available from: https://www.who.int/whr/ 2002/ en/whr02_en.pdf.
2. Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, Cuia R. The effects of psychological stress on depression. Curr Neuropharmacol 2015; 13: 494-504.
3. Ranabir S, Reetu K. Stress and hormones. Indian J Endocrinol Metab 2011; 15: 18-22.
4. Echouffo-Tcheugui JB, Conner SC, Himali JJ, Maillard P, DeCarli CS, Beiser AS, et al. Circulating cortisol and cognitive and structural brain measures: The Framingham Heart Study. Neurology 2018; 91: e1961-70.
5. Nguyen DN, Huyghens L, Zhang H, Schiettecatte J, Smitz J, Vincent JL. Cortisol is an associated-risk factor of brain dysfunction in patients with severe sepsis and septic shock. Biomed Res Int 2014; 2014:
1-7.
6. Barugh AJ, Gray P, Shenkin SD, MacLullich AM, Mead GE. Cortisol levels and the severity and outcomes of acute stroke: a systematic review. J Neurol 2014; 261: 533-45.
7. Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: A Review of the Literature. Front Aging Neurosci 2019; 11: 1-11.
8. El-Farhan N, Rees DA, Evans C. Measuring cortisol in serum, urine and saliva - are our assays good enough? Ann Clin Biochem 2017; 54: 308-22.
9. Nedić S, Pantelić M, Vranješ-Đurić S, Nedić D, Jovanović L, Čebulj-Kadunc N, et al. Cortisol concentrations in hair, blood and milk of holstein and busha cattle. Slov Vet Res 2017; 54: 163-72.
10. Abercrombie HC, Speck NS, Monticelli RM. Endogenous cortisol elevations are related to memory facilitation only in individuals who are emotionally aroused. Psychoneuroendocrinology 2006; 31: 187-96.
11. Chen YF, Li YF, Chen X, Sun QF. Neuropsychiatric disorders and cognitive dysfunction in patients with Cushing's disease. Chin Med J (Engl) 2013; 126: 3156-60.
12. McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 2016; 41: 3-23.
13. de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463-75.
14. Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, et al. Neuropathology of stress. Acta Neuropathol 2014; 127: 109-35.
15. Young KD, Preskorn SH, Victor T, Misaki M, Bodurka J, Drevets WC. The effect of mineralocorticoid and glucocorticoid receptor antagonism on autobiographical memory recall and amygdala response to implicit emotional stimuli. Int J Neuropsychopharmacol 2016; 19: pii: pyw036.
16. de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49: 124-45.
17. Klimes-Dougan B, Eberly LE, Westlund Schreiner M, Kurkiewicz P, Houri A, Schlesinger A, et al. Multilevel assessment of the neurobiological threat system in depressed adolescents: interplay between the limbic system and hypothalamic-pituitary-adrenal axis. Dev Psychopathol 2014; 26: 1321-35.
18. Hannibal KE, Bishop MD.Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther 2014; 94: 1816-25.
19. Maras PM, Molet J, Chen Y, Rice C, Ji SG, Solodkin A, et al. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Mol Psychiatry 2014; 19: 811-22.
20. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci 2005; 102: 9371-6.
21. McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med 2011; 62: 431-45.
22. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predicts selective impairments in perceptual attentional set-shifting. J Neurosci 2006; 26: 7870-4.
23. Banks WA. Brain Meets Body: The blood-brain barrier as an endocrine interface. Endocrinology 2012; 153: 4111-9.
24. Dallman MF, Pecoraro NC, la Fleur SE. Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun 2005; 19: 275-80.
25. Grillon C, Baas JP, Lissek S, Smith K, Milstein J. Anxious responses to predictable and unpredictable aversive events. Behav Neurosci 2004; 118: 916-24.
26. de Souza-Talarico JN, Marin MF, Sindi S, Lupien SJ. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement Neuropsychol 2011; 5: 8-16.
27. Mizoguchi K, Ishige A, Takeda S, Aburada M, Tabira T. Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function. J Neurosci 2004; 24: 492-9.
28. Sinclair D, Purves-Tyson TD, Allen KM, Weickert CS. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology (Berl) 2014; 231: 1581-99.
29. Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, et al. Increased stress-induced dopamine release in psychosis. Biol Psychiatry 2012; 71: 561-7.
30. Nagano-Saito A, Dagher A, Booij L, Gravel P, Welfeld K, Casey KF, et al. Stress-induced dopamine release in human medial prefrontal cortex-18F-fallypride/PET study in healthy volunteers. Synapse 2013; 67: 821-30.
31. Qin S, Hermans EJ, van Marle HJ, Luo J, Fernández G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry 2009; 66: 25-32.
32. Ossewaarde L, van Wingen GA, Kooijman SC, Bäckström T, Fernández G, Hermans EJ. Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Soc Cogn Affect Neurosci 2011; 6: 612-20.
33. Wright LD, Hebert KE, Perrot-Sinal TS. Periadolescent stress exposure exerts long-term effects on adult stress responding and expression of prefrontal dopamine receptors in male and female rats. Psychoneuroendocrinology 2008; 33: 130-42.
34. Marquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, Marquis J, et al. Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Transl Psychiatry 2013; 3: e216.
35. Reul J, Nutt DJ. Glutamate and cortisol-a critical confluence in PTSD? J Psychopharmacol 2008; 22: 469-72.
36. Osborne DM, Pearson-Leary J, McNay EC. The neuroenergetics of stress hormones in the hippocampus and implications for memory. Front Neurosci 2015; 9: 164.
37. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci 2007; 25: 3109-14.
38. Olijslagers JE, de Kloet ER, Elgersma Y, van Woerden GM, Joëls M, Karst H. Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur J Neurosci 2008; 27: 2542-50.
39. Maroun M, Richter-Levin G. Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci 2003; 23: 4406-9.
40. Quan M, Zheng C, Zhang N, Han D, Tian Y, Zhang T. Impairments of behavior, information flow between thalamus and cortex, and prefrontal cortical synaptic plasticity in an animal model of depression. Brain Res Bull 2011; 85: 109-16.
41. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N. The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 2007; 27: 2781-7.
42. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol 2017; 31: 1091-120.
43. Vielhaber K, Riemann D, Feige B, Kuelz A, Kirschbaum C, Voderholzer U. Impact of experimentally induced serotonin deficiency by tryptophan depletion on saliva cortisol concentrations. Pharmacopsychiatry 2005; 38: 87-94.
44. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 2016; 6: 603-21.
45. Heisler LK, Pronchuk N, Nonogaki K, Zhou L, Raber J, Tung L, et al. Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J Neurosci 2007; 27: 6956-64.
46. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76: 116-29.
47. Higley MJ, Picciotto MR. Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr Opin Neurobiol 2014; 29: 88-95.
48. Mańko M, Geracitano R, Capogna M. Functional connectivity of the main intercalated nucleus of the mouse amygdala. J Physiol 2011; 589: 1911-25.
49. Mansvelder HD, Mertz M, Role LW. Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol 2009; 20: 432-40.
50. Luchicchi A, Bloem B, Viaña JN, Mansvelder HD, Role LW. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Front Synaptic Neurosci 2014; 6: 24.
51. Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, et al. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Front Neurosci 2018; 12: 1-9.
52. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213: 93-118.
53. Joels M. Stress, the hippocampus, and epilepsy. Epilepsia 2009; 50: 586-97.
54. de Groote L, Linthorst AC. Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neurosci 2007; 148: 794-805.
55. Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, et al. Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 2011; 21: 422-33.
56. Agez M, Schultz P, Medina I, Baker DJ, Burnham MP, Cardarelli RA, et al. Molecular architecture of potassium chloride co-transporter KCC2. Sci Rep 2017; 7: 1-14.
57. Hewitt SA, Wamsteeker JI, Kurz EU, Bains JS. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat Neurosci 2009; 12: 438-43.
58. Christie BR, Cameron HA. Neurogenesis in the adult hippocampus. Hippocampus 2006; 16: 199-207.
59. Gjerstad JK, Lightman SL, Spiga F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 2018; 21: 403-16.
60. Du J, McEwen B, Manji HK. Glucocorticoid receptors modulate mitochondrial function: A novel mechanism for neuroprotection. Commun Integr Biol 2009; 2: 350-2.
61. Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 2008; 14: 923-30.
62. Sandi C, Pinelo-Nava MT. Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast 2007; 2007: 1-20.
63.Kwon D, Kim B, Chang H, Kim Y, Ahn Jo S, Leem YH. Exercise overcame impaired cognition by restraint stress-induced oxidative insult and BDNF abnormality. BBRC 2013; 434: 245-51.
64. Pham K, Nacher J, Hof PR, McEwen BS. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 2003; 17: 879-86.
65. Vogel S, Schwabe L. Learning and memory under stress: implications for the classroom. NPJ Sci Learn 2016; 1: 1-20.
66. Beckner VE, Tucker DM, Delville Y, Mohr DC. Stress facilitates consolidation of verbal memory for a film but does not affect retrieval. Behav Neurosci 2006; 120: 518-27.
67. Buchanan TW, Tranel D. Stress and emotional memory retrieval: effects of sex and cortisol response. Neurobiol Learn Mem 2008; 89:134-41.
68. McIntyre CK, Hatfield T, McGaugh JL. Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats. Eur J Neurosci 2002; 16: 1223-6.
69. Roozendaal B, Okuda S, Van der Zee EA, McGaugh JL. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci U S A 2006; 103: 6741-6.
70. Abercrombie HC, Speck NS, Monticelli RM. Endogenous cortisol elevations are related to memory facilitation only in individuals who are emotionally aroused. Psychoneuroendocrinology 2006; 31: 187-96.
71. Joels M, Krugers HJ. LTP after stress: Up or down? Neural Plast 2007; 2007: 93202.
72. Trueba AF, Simon E, Auchus RJ, Ritz T. Cortisol response to acute stress in asthma: Moderation by depressive mood. Physiol Behav 2016; 159: 20-6.
73. Walter EE, Fernandez F, Snelling M, Barkus E. Stress induced cortisol release and schizotypy. Psychoneuroendocrinology 2018; 89: 209-15.
74. Köther U, Lincoln TM, Moritz S. Emotion perception and overconfidence in errors under stress in psychosis. Psychiatry Res 2018; pii: S0165-1781: 31081-8.
75. Helbig S, Backhaus J. Sex differences in a real academic stressor, cognitive appraisal and the cortisol response. Physiol Behav 2017; 179: 67-74.
76. Raffington L, Prindle J, Keresztes A, Binder J, Heim C, Shing YL. Blunted cortisol stress reactivity in low-income children relates to lower memory function. Psychoneuroendocrinology 2018; 90: 110-21.
77. Quent JA, McCullough AM, Sazma M, Wolf OT, Yonelinas AP. Reward anticipation modulates the effect of stress-related increases in cortisol on episodic memory. Neurobiol Learn Mem 2018; 147: 65-73.
78. Chan S, Debono M. Replication of cortisol circadian rhythm: new advances in hydrocortisone replacement therapy. Ther Adv Endocrinol Metab 2010; 1: 129-38.
79. El-Farhan N, Rees DA, Evans C. Measuring cortisol in serum, urine and saliva - are our assays good enough? Ann Clin Biochem 2017; 54: 308-22.
80. Kidambi S, Raff H, Findling JW. Limitations of nocturnal salivary cortisol and urine free cortisol in the diagnosis of mild Cushing's syndrome. Eur J Endocrinol 2007; 157: 725-31.
81. Wright KD, Hickman R, Laudenslager ML. Hair cortisol analysis: A promising biomarker of HPA activation in older adults. Gerontologist 2015; 55: S140-5.
82. Meyer JS, Novak MA. Minireview: Hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 2012; 153: 4120-7.
83. Spijker J, Graaf R, Bijl RV, Beekman AT, Ormel J, Nolen WA. Functional disability and depression in the general population. Results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS). Acta Psychiatr Scand 2004; 110: 208-14.
84. World Health organization (WHO). Depression and other common mental disorders: Global health estimates. 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf.
85. Gotlib IH, Joormann J, Minor KL, Hallmayer J. HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol Psychiatry 2008; 63: 847-51.
86. Knorr U, Vinberg M, Kessing LV, Wetterslev J. Salivary cortisol in depressed patients versus control persons: a systematic review and meta-analysis. Psychoneuroendocrinology 2010; 35: 1275-86.
87. Shapero BG, Black SK, Liu RT, Klugman J, Bender RE, Abramson LY, et al. Stressful life events and depression symptoms: the effect of childhood emotional abuse on stress reactivity. J Clin Psychol 2014; 70: 209-23.
88. Koch CE, Leinweber B, Drengberg BC, Blaum C, Oster H. Interaction between circadian rhythms and stress. Neurobiol Stress 2016; 6: 57-67.
89. Nicolaides NC, Charmandari E, Kino T, Chrousos GP. Stress-Related and Circadian Secretion and Target Tissue Actions of Glucocorticoids: Impact on Health. Front Endocrinol (Lausanne) 2017; 8: 70.
90. Vreeburg SA, Hoogendijk WJ, van Pelt J, Derijk RH, Verhagen JC, van Dyck R, et al. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry 2009; 66: 617-26.
91. Bhagwagar Z, Hafizi S, Cowen PJ. Increased salivary cortisol after waking in depression. Psychopharmacol (Berl) 2005; 182: 54-7.
92. Pruessner M, Hellhammer DH, Pruessner JC, Lupien SJ. Self-reported depressive symptoms and stress levels in healthy young men: associations with the cortisol response to awakening. Psychosom Med 2003; 65: 92-9.
93. Bandelow B. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci 2015; 17: 327-35.
94. Hek K, Direk N, Newson RS, Hofman A, Hoogendijk WJ, Mulder CL, et al. Anxiety disorders and salivary cortisol levels in older adults: a population-based study. Psychoneuroendocrinology 2013; 38: 300-5.
95. Lenze EJ, Mantella RC, Shi P, Goate AM, Nowotny P, Butters MA, et al. Elevated cortisol in older adults with generalized anxiety disorder is reduced by treatment: a placebo-controlled evaluation of escitalopram. Am J Geriatr Psychiatry 2011; 19: 482-90.
96. Mantella RC, Butters MA, Amico JA, Mazumdar S, Rollman BL, Begley AE, et al. Salivary cortisol is associated with diagnosis and severity of late-life generalized anxiety disorder. Psychoneuroendocrinology 2008; 33: 773-81
97. Heaney JL, Phillips AC, Carroll D. Ageing, depression, anxiety, social support and the diurnal rhythm and awakening response of salivary cortisol. Int J Psychophysiol 2010; 78: 201-08.
98. Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn 2007; 65: 209-37.
99. Sang YM, Wang LJ, Mao HX, Lou XY, Zhu YJ. The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals. Acta Diabetol 2018; 55: 531-39.
100. Echouffo-Tcheugui JB, Conner SC, Himali JJ, Maillard P, DeCarli CS, Beiser AS, et al. Circulating cortisol and cognitive and structural brain measures: the Framingham heart study. Neurology 2018; 91: e1961-70.
101. Ouanes S, Castelao E, Gebreab S, von Gunten A, Preisig M, Popp J. Life events, salivary cortisol, and cognitive performance in nondemented subjects: a population-based study. Neurobiology 2017; 51:
1-8.
102. Geerlings MI, Sigurdsson S, Eiriksdottir G, Garcia ME, Harris TB, Gudnason V, et al. Salivary cortisol, brain volumes, and cognition in community-dwelling elderly without dementia. Neurology 2015; 85: 976-83.
103. Lee BK, Glass TA, Wand GS, McAtee MJ, Bandeen-Roche K, Bolla KI, et al. Apolipoprotein e genotype, cortisol, and cognitive function in community-dwelling older adults. Am J Psychiatry 2008; 165: 1456-64.
104. Beluche I, Carriere I, Ritchie K, Ancelin ML. A prospective study of diurnal cortisol and cognitive function in community-dwelling elderly people. Psychol Med 2010; 40: 1039-49.
105. Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol 2007; 157: 545-59.
106. Poll EM, Boström A, Bürgel U, Reinges MH, Hans FJ, Gilsbach JM, et al. Cortisol dynamics in the acute phase of aneurysmal subarachnoid hemorrhage: associations with disease severity and outcome. J Neurotrauma 2010; 27: 189-95.
107. Becker DE. Basic and clinical pharmacology of glucocorticosteroids. Anesth Prog 2013; 60: 25.
108. Schimmer BP, Funder JW. ACTH, adrenal steroids, and pharmacology of the adrenal cortex. In: Goodman & Gilman's: The pharmacological basis of therapeutics, 12th ed, Brunton LL, Chabner BA, Knollmann BC (Eds), McGraw-Hill Education 2011.
109. Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 2013, 9: 30.
110. Waljee AK, Rogers MA, Lin P, Singal AG, Stein JD, Marks RM, et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ 2017; 357: j1415.
111. Hoes JN, Jacobs JW, Verstappen SM, Bijlsma JW, Van der Heijden GJ. Adverse events of low- to medium-dose oral glucocorticoids in inflammatory diseases: a meta-analysis. Ann Rheum Dis 2009; 68: 1833.
112. Chrousos GP. The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord 2000; 24: S50-5.
113. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pr 2014; 2014: 1-21.
114. Pradhan AD, Manson JE, Rossouw JE, Siscovick DS, Mouton CP, Rifai N, et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women's Health Initiative observational study. JAMA 2002; 288: 980-7.
115. Gallegos AM, Cross W, Pigeon WR. Mindfulness-based stress reduction for veterans exposed to military sexual trauma: Rationale and implementation considerations. Mil Med 2015; 180: 684-9.
116. Poulin PA, Mackenzie CS, Soloway G, Karayolas E. Mindfulness training as an evidenced-based approach to reducing stress and promoting well-being among human services professionals. Int J Health Prom Edu 2008; 46: 35-43.
117. Amutio A, Martínez-Taboada C, Hermosilla D, Delgado LC. Enhancing relaxation states and positive emotions in physicians through a mindfulness training program: A one-year study.
Psychol Health Med 2015; 20: 720-31.
118. Abbott R, Lavretsky H . Tai Chi and Qigong for the treatment and prevention of mental disorders. Psychiatr Clin North Am 2013; 36: 109-19.
119. Siddarth D, Siddarth P, Lavretsky H. An observational study of the health benefits of yoga or tai chi compared with aerobic exercise in community-dwelling middle-aged and older adults. Am J Geriatr Psychiatry 2014; 22: 272-3.
120. Lavretsky H. Complementary and alternative medicine use for treatment and prevention of late-life mood and cognitive disorders. Aging Health 2009; 5: 61-78.
121. Eyre HA, Acevedo B, Yang H, Siddarth P, Van Dyk K, Ercoli L, et al. Changes in Neural Connectivity and Memory Following a Yoga Intervention for Older Adults: A Pilot Study. J Alzheimers Dis 2016; 52: 673-84.
122. Maddux RE, Daukantaité D, Tellhed U. The effects of yoga on stress and psychological health among employees: an 8- and 16-week intervention study. Anxiety Stress Coping 2018; 31: 121-34.
123. Hötting K, Schickert N, Kaiser J, Röder B, Schmidt-Kassow M. The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plast 2016; 2016: 1-12.
124. Griffin ÉW, Bechara RG, Birch AM, Kelly ÁM. Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 2009; 19: 973-80.
125. Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology 2014; 76: 677-83.
126. Ge Q, Wang Z, Wu Y, Huo Q, Qian Z, Tian Z, Ren W, et al. High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Mol Nutr Food Res 2017; 61: 1-11.
127. Granholm AC, Bimonte-Nelson HA, Moore A, Nelson M, Freeman LR, Sambamurti K. Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis 2008; 14: 133-45.
128. Freeman LR, Haley-Zitlin V, Stevens C, Granholm AC. Diet-induced effects on neuronal and glial elements in the middle-aged rat hippocampus. Nutr Neurosci 2011; 14: 32-44.
129. Mielke JG, Nicolitch K, Avellaneda V, Earlam K, Ahuja T, Mealing G, et al. Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behav Brain Res 2006; 175: 374-82.
130. Pasinetti GM, Eberstein JA. Metabolic syndrome and the role of dietary lifestyles in Alzheimer's disease. J Neurochemist 2008; 106: 1503-14.

Downloads

Published

2020-07-22

How to Cite

1.
Hawiset T, Inkeaw P. Effects of Stress and Cortisol on the Brain Behavioral Functions: Mood and Memory . SRIMEDJ [Internet]. 2020 Jul. 22 [cited 2024 Apr. 24];35(4):496-511. Available from: https://li01.tci-thaijo.org/index.php/SRIMEDJ/article/view/245536

Issue

Section

Review Articles