Effects of Polycephalomyces Nipponicus Aqueous Extract on Mood and Motor Coordination in Acute Ethanol-Treated Mice
Keywords:
Polycepholomyces nipponicus, ethanol, mood disorder, motor impairment, miceAbstract
Background and Objective: Acute ethanol drinking leads to impaired motor coordination and judgment, which is one of the common causes of many accidents and deaths. Presently, many scientists have attracted medicinal plants containing polyphenols that have shown potential in alleviating the toxic and hangover effects of acute ethanol consumption. Polycephalomyces nipponicus, (P. nipponicus) an insect pathogenic fungus has demonstrated notable potential as a source of natural antioxidants and antimicrobial compounds and contains high total phenolic and flavonoid content. Therefore, the present study aimed to evaluate the effects of P. nipponicus extract on acute protective effects of ethanol-induced mood disorders and motor impairments in mice.
Methods: Male ICR mice were divided into 6 groups of 8 animals per group.: normal control, ethanol (2 g/kg), P. nipponicus extract (200, 600 mg/kg), and pretreated P. nipponicus, extract groups (200, 600 mg/kg). Before receiving ethanol, Mice were orally administered either water or P. nipponicus extract 200 or 600 mg/kg. One hour after, the mice were given either water or ethanol (2 g/kg). Thirty minutes following the second treatment, mice were subjected to exploratory test, tail suspension test (TST), rotarod test and footprint analysis.
Results: Ethanol treatment significantly decreased number of crossings, rearing and nose-poking in exploratory test indicating anxiety-like behavior, and increased immobility time in tail suspension test (TST) indicating depressive-like behavior. And then the rotarod test showed a decrease of time on the rod and an increase in gait abnormalities as observed in gait analysis, revealing the impairment of motor functions. P. nipponicus treatment, especially at 600 mg/kg, significantly alleviated the effects of ethanol in inducing mood disorders and motor impairments.
Conclusion: The results suggested that P. nipponicus extract could mitigate the acute effects of ethanol in inducing anxiety- and depressive-like behaviors and motor impairments.
References
Pervin Z, Stephen JM. Effect of alcohol on the central nervous system to develop neurological disorder: pathophysiological and lifestyle modulation can be potential therapeutic options for alcohol-induced neurotoxication. AIMS Neurosci. 2021;8(3):390–413. doi:10.3934/Neuroscience.2021021
Schuckit MA. Alcohol-use disorders. The Lancet. 2009;373(9662):492–501. doi:10.1016/S0140-6736(09)60009-X
Chastain G. Alcohol, neurotransmitter systems, and behavior. J Gen Psychol. 2006;133(4):329–35. doi:10.3200/GENP.133.4.329-335
Baliño P, Romero-Cano R, Sánchez-Andrés JV, Valls V, Aragón CG, Muriach M. Effects of acute ethanol administration on Brain Oxidative Status: The Role of Acetaldehyde. Alcohol Clin Exp Res 2019;43(8):1672–81. doi:10.1111/acer.14133
Jung SH, Lee YH, Lee EK, Park SD, Shim JJ, Lee JL, et al. Effects of plant-based extract mixture on alcohol metabolism and hangover improvement in humans: a randomized, Double-Blind, Paralleled, Placebo-Controlled Clinical Trial. J Clin Med 2023;12(16):5244. doi:10.3390/jcm12165244
Crabb DW, Matsumoto M, Chang D, You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 2004;63(1):49–63. doi:10.1079/pns2003327
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009;2(5):270–8. doi:10.4161/oxim.2.5.9498
Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL, et al. Overexpression of Adenosine A2A Receptors in Rats: effects on depression, Locomotion, and Anxiety. Front Psychiatry 2014;5:67. doi:10.3389/fpsyt.2014.00067
Buranrat B, Sangdee K, Sangdee A. Comparative Study on the Effect of aqueous and ethanolic mycelial extracts from Polycephalomyces nipponicus (Ascomycetes) against human breast cancer MCF-7 cells. Int J Med Mushrooms 2019;21(7):671-81. doi:10.1615/IntJMedMushrooms.2019031140.889d09f58e41d3c,1d769638151af724.html
Sangdee K, Nakbanpote W, Sangdee A. Isolation of the entomopathogenic fungal strain Cod-MK1201 from a Cicada Nymph and Assessment of Its Antibacterial Activities. Int J Med Mushrooms 2015;17(1):51–63. doi:10.1615/intjmedmushrooms.v17.i1.60
Supawat A, Srisuwan S, Sattayasai J. Oral glutamate intake reduces acute and chronic effects of ethanol in rodents. Trop J Pharm Res 2016;15(7):1493. doi:10.4314/tjpr.v15i7.20
Brown G, Nemes C. The exploratory behaviour of rats in the hole-board apparatus: Is head-dipping a valid measure of neophilia? Behav Processes 2008;78:442–8. doi:10.1016/j.beproc.2008.02.019
Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD. The tail suspension test. J Vis Exp JoVE 2012;(59):e3769. doi:10.1016/j.beproc.2008.02.019
Deacon RMJ. Measuring motor coordination in mice. J Vis Exp JoVE 2013;(75):e2609. doi:10.3791/2609
Karadayian AG, Cutrera RA. Alcohol hangover: type and time-extension of motor function impairments. Behav Brain Res 2013;247:165–73. doi:10.1016/j.bbr.2013.03.037
Toth ME, Gonda S, Vigh L, Santha M. Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration. Cell Stress Chaperones 2010;15(6):807–17. doi:10.1007/s12192-010-0188-8
Zhang K, Li RF, Li H, Lin H, Sun ZM, Zhan SL. Acute alcohol exposure suppressed locomotor activity in mice. Stress Brain 2022;2:46–52. doi:10.26599/SAB.2022.9060016
Lithari C, Klados MA, Pappas C, Albani M, Kapoukranidou D, Kovatsi L, et al. Alcohol Affects the Brain’s Resting-State Network in Social Drinkers. PLoS One 2012;7(10):e48641. doi:10.1371/journal.pone.004864119.
Nagy J. Alcohol Related Changes in Regulation of NMDA Receptor Functions. Curr Neuropharmacol 2008;6(1):39–54. doi:10.2174/157015908783769662
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017;96(6):1223–38. doi:10.1016/j.neuron.2017.10.032
Pinheiro BG, Luz DA, Cartágenes S de C, Fernandes L de MP, Farias SV, Kobayashi NHC, et al. The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharm Basel Switz 2022;15(11):1323. doi:10.3390/ph15111323
Heit C, Dong H, Chen Y, Thompson DC, Deitrich RA, Vasiliou V. The role of CYP2E1 in alcohol metabolism and sensitivity in the central nervous system. Subcell Biochem 2013;67:235–47. doi: 10.1007/978-94-007-5881-0_8
Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, et al. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr 2010;5(2):101–9. doi:10.1007/s12263-009-0159-9
Somsila P, Sakee U, Srifa A, Kanchanarach W. Antioxidant and Antimicrobial Activities of Polycephalomyces nipponicus. J Pure Appl Microbiol 2018;12:567–76. doi:10.22207/JPAM.12.2.15
Surapong N, Sangdee A, Chainok K, Pyne S, Seephonkai P. Production and Antifungal Activity of Cordytropolone and (-)-Leptosphaerone A From the Fungus Polycephalomyces nipponicus. Nat Prod Commun 2019;14:1934578X1984412. doi:10.1177/1934578X19844120
Sonyot W, Lamlertthon S, Luangsa-ard JJ, Mongkolsamrit S, Usuwanthim K, Ingkaninan K, et al. In Vitro Antibacterial and Anti-Inflammatory Effects of Novel Insect Fungus Polycephalomyces phaothaiensis Extract and Its Constituents against Propionibacterium acnes. Antibiotics 2020;9(5):274. doi:10.3390/antibiotics9050274
Srinivasan S, Dubey KK, Singhal RS. Influence of food commodities on hangover based on alcohol dehydrogenase and aldehyde dehydrogenase activities. Curr Res Food Sci 2019;1:8–16. doi:10.1016/j.crfs.2019.09.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Srinagarind Medical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.