Immediate Impact of Snake Fruit Jelly Consumption on Autonomic Nervous System Regulation of Heart Function and Blood Glucose Level in Healthy Young Adults
Keywords:
salak, blood pressure, heart rate variability, antioxidants, anti-inflammationAbstract
Background and Objective: Salak or snake fruit is a type of fruit rich in vitamins and minerals, known to possess antioxidant and anti-inflammatory properties that positively affect the autonomic nervous system function controlling the heart. Therefore, this study aimed to investigate the acute effects of consuming jelly made from snake fruit on autonomic nervous system activity related to heart function in healthy young adults.
Methods: A randomized controlled trial, cross-over design was conducted. Twenty-five healthy volunteers aged 18–35 years consumed both a control and a test formula of ready-to-drink jelly made from snake fruit, administered randomly in a 140-gram portion. Measurements of heart rate variability, blood pressure, heart rate, and blood glucose levels were taken before consumption (minute 0) and at 30-minute intervals after consumption over a 2-hour period (minutes 30, 60, 90, and 120). A one-week washout period was maintained between the consumption of the two jelly formulas.
Results: After consuming the ready-to-drink jelly, the test group showed significantly higher values (p<0.05) in R-R interval, standard deviation of all normal to normal R-R intervals, root mean squares of successive NN interval differences, total power, and high frequency power. Additionally, heart rate and blood glucose levels at minutes 30 and 60 were significantly lower (p<0.05) than those in the control group. However, there were no differences between groups in systolic and diastolic blood pressure levels.
Conclusion: Consumption of ready-to-drink jelly made from snake fruit increases heart rate variability by enhancing parasympathetic nervous system activity and decreases heart rate and blood glucose levels within the first hour in healthy young adults.
References
Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int 2014;2014:406960. doi:10.1155/2014/406960
Shrout T, Rudy DW, Piascik MT. Hypertension update, JNC8 and beyond. Curr Opin Pharmacol 2017;33:41-6. doi:10.1016/j.coph.2017.03.004
National Center for Health Statistics. Hypertension prevalence, awareness, treatment, and control among adults age 18 and older: United States, August 2021-August 2023 [internet]. 2025 [Cited Feb 14, 2025]. Available from https://www.cdc.gov/nchs/products/databriefs/db511.htm.
Division of Non-Communicable Diseases, Department of Disease Control, Ministry of Public Health. Annual Report 2023 [internet]. 2025 [Cited 2025 Feb 14]. Available from https://online.fliphtml5.com/bcbgj/yatm/#p=1.
Seals DR, Monahan KD, Bell C, Tanaka H, Jones PP. The aging cardiovascular system: changes in autonomic function at rest and in response to exercise. Int J Sport Nutr Exerc Metab 2001;11(Suppl):S189-95. doi:10.1123/ijsnem.11.s1.s189
Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 2012;8(1):143-64. doi:10.1016/j.hfc.2011.08.011
Takahashi N, Nakagawa M, Saikawa T, Ooie T, Yufu K, Shigematsu S, et al. Effect of essential hypertension on cardiac autonomic function in type 2 diabetic patients. J Am Coll Cardiol 2001;38(1):232-7. doi:10.1016/S0735-1097(01)01363-8
Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension 2003;42(6):1106-11. doi:10.1161/01.HYP.0000100444.71069.73
Sharma P, Paudel BH, Singh PN, Limbu P. Heart rate variability: response to graded head up tilt in healthy men. Kathmandu Univ Med J (KUMJ) 2009;7(27):252-7. doi:10.3126/kumj.v7i3.2733
Liao D, Cai J, Barnes RW, Tyroler HA, Rautaharju P, Holme I, et al. Association of cardiac autonomic function and the development of hypertension: the ARIC study. Am J Hypertens 1996;9(12 Pt 1):1147-56. doi:10.1016/S0895-7061(96)00249-X
Singh JP, Larson MG, Tsuji H, Evans JC, O'Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension 1998;32(2):293-7. doi:10.1161/01.HYP.32.2.293
Guzzetti S, Piccaluga E, Casati R, Cerutti S, Lombardi F, Pagani M, et al. Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens 1988;6(9):711-7. doi:10.1097/00004872-198809000-00004
Mussalo H, Vanninen E, Ikaheimo R, Laitinen T, Laakso M, Lansimies E, et al. Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clin Physiol 2001;21(5):594-604. doi:10.1046/j.1365-2281.2001.00359.x
Fagard RH, Pardaens K, Staessen JA. Relationships of heart rate and heart rate variability with conventional and ambulatory blood pressure in the population. J Hypertens 2001;19(3):389-97. doi:10.1097/00004872-200103000-00006
Saleh M, Siddiqui MJ, Mediani A, Ismail N, Ahmed Q, Mat So'ad S, et al. Salacca zalacca: a short review of the palm botany, pharmacological uses and phytochemistry. Asian Pac J Trop Med 2018;11:645. doi:10.4103/1995-7645.248321
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018;10(11):1618. doi:10.3390/nu10111618
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019;299:125124. doi:10.1016/j.foodchem.2019.125124
Park M, Cho H, Jung H, Lee H, Hwang KT. Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. J Food Biochem 2014;38(3):259-70. doi:10.1111/jfbc.12044
Campos KKD, Araujo GR, Martins TL, Bandeira ACB, Costa GP, Talvani A, et al. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. J Nutr Biochem 2017;48:9-20. doi:10.1016/j.jnutbio.2017.06.004
Booranasuksakul U, Singhato A, Rueangsri N, Prasertsri P. Effects of mulberry (Morus alba) leaf tea on blood glucose and satiety in healthy subjects. Srinagarind Medical Journal 2019;34(3):237-42.
Prasertsri P, Booranasuksakul U, Naravoratham K, Trongtosak P. Acute effects of passion fruit juice supplementation on cardiac autonomic function and blood glucose in healthy subjects. Prev Nutr Food Sci 2019;24(3):245-53. doi:10.3746/pnf.2019.24.3.245
Manimmanakorn N, Manimmanakorn A, Vichiansiri R, Saengsuwan J, Leelayuwat N. Heart rate viability assessment and clinical uses. J Rehabil Med 2018;28(1):32-6.
Kleiger RE, Stein PK, Bigger JT, Jr. Heart rate variability: Measurement and clinical utility. Ann Noninvasive Electrocardiol 2005;10(1):88-101. doi:10.1111/j.1542-474X.2005.10101.x
Prasertsri P, Boonla O, Vierra J, Yisarakun W, Koowattanatianchai S, Phoemsapthawee J. Effects of Riceberry rice bran oil supplementation on oxidative stress and cardiovascular risk biomarkers in older adults with prehypertension. Prev Nutr Food Sci 2022;27(4):365-75. doi:10.3746/pnf.2022.27.4.365
Lopresti AL. Association between micronutrients and heart rate variability: a review of human studies. Adv Nutr 2020;11(3):559-75. doi:10.1093/advances/nmz136
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996;93(5):1043-65. doi:10.1161/01.cir.93.5.1043
Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 2008;118(8):863-71. doi:10.1161/CIRCULATIONAHA.107.760405
Quer G, Gouda P, Galarnyk M, Topol EJ, Steinhubl SR. Inter- and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: retrospective, longitudinal cohort study of 92,457 adults. PLoS One 2020;15(2):e0227709. doi:10.1371/journal.pone.0227709
Tiwari R, Kumar R, Malik S, Raj T, Kumar P. Analysis of heart rate variability and implication of different factors on heart rate variability. Curr Cardiol Rev 2021;17(5):e160721189770. doi:10.2174/1573403X16999201231203854.
Dakhale GN, Chaudhari HV, Shrivastava M. Supplementation of vitamin C reduces blood glucose and improves glycosylated hemoglobin in type 2 diabetes mellitus: a randomized, double-blind study. Adv Pharmacol Sci 2011;2011:195271. doi:10.1155/2011/195271
Straub LG, Efthymiou V, Grandl G, Balaz M, Challa TD, Truscello L, et al. Antioxidants protect against diabetes by improving glucose homeostasis in mouse models of inducible insulin resistance and obesity. Diabetologia 2019;62(11):2094-105. doi:10.1007/s00125-019-4937-7
Nowak D, Goslinski M, Wesolowska A, Berenda K, Poplawski C. Effects of acute consumption of noni and chokeberry juices vs. energy drinks on blood pressure, heart rate, and blood glucose in young adults. Evid Based Complement Alternat Med 2019;2019:6076751. doi:10.1155/2019/6076751
Dussossoy E, Brat P, Bony E, Boudard F, Poucheret P, Mertz C, et al. Characterization, anti-oxidative and anti-inflammatory effects of Costa Rican noni juice (Morinda citrifolia L.). J Ethnopharmacol 2011;133(1):108-15. doi:10.1016/j.jep.2010.08.063
Ferlemi AV, Lamari FN. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants (Basel) 2016;5(2). doi:10.3390/antiox5020017
Zhao C, Wan X, Zhou S, Cao H. Natural polyphenols: a potential therapeutic approach to hypoglycemia. eFood 2020;1(2):107-18. doi:10.2991/efood.k.200302.001
Sun C, Zhao C, Capanoglu E, Paoli P, Simal-Gandara J, Ramkumar K, et al. Dietary polyphenols as antidiabetic agents: advances and opportunities. Food Frontiers 2020;1(1):18-44. doi:10.1002/fft2.15
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Srinagarind Medical Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
