Ceftobiprole Medocaril: A New Antibiotic Option for the Treatment of MRSA Infections

Authors

  • Poochara Shnatepaporn Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen Province
  • Chatchawan Buddeepoot Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen Province
  • Piriyaporn Promsuwan Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen Province
  • Issara Bungtong Department of Pharmacy Service, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen Province
  • Pathomthat Srisuk Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen Province
  • Nattawat Teerawattanapong Faculty of Pharmacy, Nakornratchasima College, Nakornratchasima Province
  • Piyaphon Singkhon Khon Kaen Wittayayon School, Khon Kaen Province
  • Kulwadee Nuntasena Department of Pharmacy, Khao Suan Kwang Hospital, Khon Kaen Province
  • Theera Rittirod Faculty of Pharmacy, Nakornratchasima College, Nakornratchasima Province

Keywords:

ceftobiprole medocaril, fifth-generation cephalosporin, methicillin-resistant Staphylococcus aureus (MRSA) infection

Abstract

Methicillin-resistant Staphylococcus aureus (Methicillin-resistant Staphylococcus aureus; MRSA) remains a leading cause of severe infections involving multiple organ systems, including skin and soft tissue infections, pneumonia, bloodstream infections, and infective endocarditis. Without timely and appropriate antimicrobial therapy, these infections can result in serious complications and significant mortality. Vancomycin remains the standard treatment for MRSA but has notable limitations, including nephrotoxicity, suboptimal drug levels in critically ill patients, and reduced efficacy in isolates with elevated minimum inhibitory concentrations (MICs). Although alternative agents—such as daptomycin, linezolid, and ceftaroline offer benefits in certain scenarios but are limited by issues such as ineffectiveness in pneumonia, risk of myelosuppression, or hematologic toxicity. These challenges, along with rising antimicrobial resistance, underscore the need for new agents with enhanced efficacy and safety profiles. Ceftobiprole medocaril, a fifth-generation cephalosporin, was developed to address these needs. It exhibits broad-spectrum activity, including efficacy against MRSA and certain gram-negative pathogens. This narrative review aims to provide a comprehensive overview of the physicochemical properties, mechanism of action, pharmacokinetic and pharmacodynamic profiles, clinical applications, and current clinical evidence on the efficacy and safety of ceftobiprole medocaril, to support its consideration as a promising therapeutic option for MRSA-related infections.

References

Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 2018;9:2419. doi:10.3389/fmicb.2018.02419.

Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28(3):603-61. doi:10.1128/CMR.00134-14.

van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev 2012;25(2):362-86. doi:10.1128/CMR.05022-11.

Opal SM, Pop-Vicas A. Molecular mechanisms of antibiotic resistance in bacteria. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: W.B. Saunders; 2015:235–51.

World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO., 2024.

Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, 2019. Atlanta (GA): U.S. Department of Health and Human Services; 2019.

Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022;399(10325):629-55. doi:10.1016/S0140-6736(21)02724-0.

Pongbangli N, Oniem N, Chaiwarith R, Nantsupawat T, Phrommintikul A, Wongcharoen W. Prevalence of Staphylococcus aureus nasal carriage and surgical site infection rate among patients undergoing elective cardiac surgery. Int J Infect Dis 2021;106:409-14. doi:10.1016/j.ijid.2021.03.024.

Rattanaumpawan P, Choorat C, Takonkitsakul K, Tangkoskul T, Seenama C, Thamlikitkul V. A prospective surveillance study for multidrug-resistant bacteria colonization in hospitalized patients at a Thai University hospital. Antimicrob Resist Infect Control 2018;7:102. doi:10.1186/s13756-018-0393-2.

Jaganath D, Jorakate P, Makprasert S, Sangwichian O, Akarachotpong T, Thamthitiwat S, et al. Staphylococcus aureus bacteremia Incidence and methicillin resistance in rural Thailand, 2006-2014. Am J Trop Med Hyg 2018;99(1):155-63. doi:10.4269/ajtmh.17-0631.

Chaiwarith R, Pacharasupal P, Sirisanthana T. Epidemiology, clinical characteristics and treatment outcomes of healthcare- associated methicillin-resistant Staphylococcus aureus bloodstream infections at Chiang Mai University hospital: a retrospective study. Southeast Asian J Trop Med Public Health 2014;45(4):897-905.

Waitayangkoon P, Thongkam A, Benjamungkalarak T, Rachayon M, Thongthaisin A, Chatsuwan T, et al. Hospital epidemiology and antimicrobial susceptibility of isolated methicillin-resistant Staphylococcus aureus: a one-year retrospective study at a tertiary care center in Thailand. Pathog Glob Health 2020;114(4):212-7. doi:10.1080/20477724.2020.1755550.

Bunnueang N, Kongpheng S, Yadrak P, Rattanachuay P, Khianngam S, Sukhumungoon P. Methicillin-resistant Staphylococcus aureus: 1-year collection and characterization from patients in two tertiary hospitals, Southern Thailand. Southeast Asian J Trop Med Public Health 2016;47(2):234-44.

Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 2018;4:18033. doi:10.1038/nrdp.2018.33.

Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century-a clinical super-challenge. N Engl J Med 2009;360(5):439-43. doi:10.1056/NEJMp0804651.

Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 2011;52(3):e18-55. doi:10.1093/cid/ciq146.

Lodise TP, Rosenkranz SL, Finnemeyer M, Evans S, Sims M, Zervos MJ, et al. The emperor's new clothes: prospective observational evaluation of the association between initial vancomycin exposure and failure rates among adult hospitalized patients with methicillin-resistant Staphylococcus aureus bloodstream infections (PROVIDE). Clin Infect Dis 2020;70(8):1536-45. doi:10.1093/cid/ciz460.

Casapao AM, Lodise TP, Davis SL, Claeys KC, Kullar R, Levine DP, et al. Association between vancomycin day 1 exposure profile and outcomes among patients with methicillin-resistant Staphylococcus aureus infective endocarditis. Antimicrob Agents Chemother. 2015;59(6):2978-85. doi: 10.1128/AAC.03970-14.

Sagent Pharmaceuticals. Daptomycin for injection [prescribing information]. 2020. [cited Apr 30, 2025]. Available from: https://www.fda.gov/drugsatfda

Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 2006;355(7):653-65. doi:10.1056/NEJMoa053783.

Quist SR, Fierlbeck G, Seaton RA, Loeffler J, Chaves RL. Comparative randomised clinical trial against glycopeptides supports the use of daptomycin as first-line treatment of complicated skin and soft-tissue infections. Int J Antimicrob Agents 2012;39(1):90-1. doi:10.1016/j.ijantimicag.2011.08.007.

Ortwine JK, Werth BJ, Sakoulas G, Rybak MJ. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the "seesaw effect": taking advantage of the back door left open? Drug Resist Updat 2013;16(3-5):73-9. doi:10.1016/j.drup.2013.10.002.

Silverman JA, Mortin LI, Vanpraagh AD, Li T, Alder J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 2005 15;191(12):2149-52. doi:10.1086/430352.

Boselli E, Breilh D, Rimmelé T, Djabarouti S, Toutain J, Chassard D, et al. Pharmacokinetics and intrapulmonary concentrations of linezolid administered to critically ill patients with ventilator-associated pneumonia. Crit Care Med 2005;33(7):1529-33. doi:10.1097/01.ccm.0000168206.59873.80.

Sipahi OR, Bardak-Ozcem S, Turhan T, Arda B, Ruksen M, Pullukcu H, et al. Vancomycin versus linezolid in the treatment of methicillin-resistant Staphylococcus aureus meningitis. Surg Infect (Larchmt) 2013;14(4):357-62. doi:10.1089/sur.2012.091.

Gerson SL, Kaplan SL, Bruss JB, Le V, Arellano FM, Hafkin B, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother 2002;46(8):2723-6. doi:10.1128/AAC.46.8.2723-2726.2002.

Bai AD, McKenna S, Wise H, Loeb M, Gill SS. Association of linezolid with risk of serotonin syndrome in patients receiving antidepressants. JAMA Netw Open 2022;5(12):e2247426. doi:10.1001/jamanetworkopen.2022.47426.

Saravolatz L, Pawlak J, Johnson L. In vitro activity of ceftaroline against community-associated methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, and daptomycin-nonsusceptible Staphylococcus aureus isolates. Antimicrob Agents Chemother 2010;54(7):3027-30. doi:10.1128/AAC.01516-09.

Kaye KS, Udeani G, Cole P, Friedland HD. Ceftaroline fosamil for the treatment of hospital-acquired pneumonia and ventilator-associated pneumonia. Hosp Pract (1995) 2015;43(3):144-9. doi:10.1080/21548331.2015.1037228.

Corey GR, Wilcox MH, Talbot GH, Thye D, Friedland D, Baculik T. CANVAS 1: the first phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 2010;65(suppl 4):iv41-51. doi:10.1093/jac/dkq254.

Wilcox MH, Corey GR, Talbot GH, Thye D, Friedland D, Baculik T. CANVAS 2: the second phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 2010;65(suppl 4):iv53-65. doi:10.1093/jac/dkq255.

Ho TT, Cadena J, Childs LM, Gonzalez-Velez M, Lewis JS 2nd. Methicillin-resistant Staphylococcus aureus bacteraemia and endocarditis treated with ceftaroline salvage therapy. J Antimicrob Chemother 2012;67(5):1267-70. doi:10.1093/jac/dks006.

Geriak M, Haddad F, Rizvi K, Rose W, Kullar R, LaPlante K, et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2019;63(5):e02483-18. doi:10.1128/AAC.02483-18.

Yam FK, Kwan BK. A case of profound neutropenia and agranulocytosis associated with off-label use of ceftaroline. Am J Health Syst Pharm 2014;71(17):1457-61. doi:10.2146/ajhp130474.

Jansen JW, Moenster RP. Rate and incidence of adverse reactions associated with ceftaroline exposure: importance of cutaneous manifestations. Ann Pharmacother 2018;52(3):235-9. doi:10.1177/1060028017735629.

Holland TL, Cosgrove SE, Doernberg SB, Jenkins TC, Turner NA, Boucher HW, et al. Ceftobiprole for treatment of complicated Staphylococcus aureus bacteremia. N Engl J Med 2023;389(15):1390-401. doi:10.1056/NEJMoa2300220.

U.S. Food and Drug Administration. ZEVTERA (ceftobiprole medocaril sodium for injection) prescribing information. 2024. [cited Apr 30, 2025]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218275s000lbl.pdf

Hebeisen P, Heinze-Krauss I, Angehrn P, Hohl P, Page MG, Then RL. In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob Agents Chemother 2001;45(3):825-36. doi:10.1128/AAC.45.3.825-836.2001.

National Center for Biotechnology Information. PubChem compound summary for CID 135456161, ceftobiprole medocaril. 2019. [cited Apr 30, 2025]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ceftobiprole-Medocaril

Widmer AF. Ceftobiprole: a new option for treatment of skin and soft-tissue infections due to methicillin-resistant Staphylococcus aureus. Clin Infect Dis 2008;46(5):656-8. doi:10.1086/526528.

Davies TA, Page MG, Shang W, Andrew T, Kania M, Bush K. Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Antimicrob Agents Chemother 2007;51(7):2621-4. doi:10.1128/AAC.00029-07.

Lovering AL, Gretes MC, Safadi SS, Danel F, de Castro L, Page MG, et al. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J Biol Chem 2012;287(38):32096-102. doi: 10.1074/jbc.M112.355644.

Lodise TP, Patel N, Renaud-Mutart A, Gorodecky E, Fritsche TR, Jones RN. Pharmacokinetic and pharmacodynamic profile of ceftobiprole. Diagn Microbiol Infect Dis 2008;61(1):96-102. doi:10.1016/j.diagmicrobio.2008.02.013.

Li WZ, Wu HL, Chen YC, Guo BN, Liu XF, Wang Y, et al. Pharmacokinetics, pharmacodynamics, and safety of single- and multiple-dose intravenous ceftobiprole in healthy Chinese participants. Ann Transl Med 2021;9(11):936. doi:10.21037/atm-21-588.

Muller AE, Punt N, Engelhardt M, Schmitt-Hoffmann AH, Mouton JW. Pharmacokinetics and target attainment of ceftobiprole in Asian and non-Asian subjects. Clin Pharmacol Drug Dev 2018;7(7):781-7. doi:10.1002/cpdd.465.

Overcash JS, Kim C, Keech R, Gumenchuk I, Ninov B, Gonzalez-Rojas Y, et al. Ceftobiprole compared with vancomycin plus aztreonam in the treatment of acute bacterial skin and skin structure infections: results of a phase 3, randomized, double-blind trial (TARGET). Clin Infect Dis 2021;73(7):e1507-17. doi:10.1093/cid/ciaa974.

Nicholson SC, Welte T, File TM Jr, Strauss RS, Michiels B, Kaul P, et al. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int J Antimicrob Agents 2012;39(3):240-6. doi:10.1016/j.ijantimicag.2011.11.005.

Awad SS, Rodriguez AH, Chuang YC, Marjanek Z, Pareigis AJ, Reis G, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 2014;59(1):51-61. doi:10.1093/cid/ciu219.

Bosheva M, Gujabidze R, Károly É, Nemeth A, Saulay M, Smart JI, et al. A phase 3, randomized, investigator-blinded trial comparing ceftobiprole with a standard-of-care cephalosporin, with or without vancomycin, for the treatment of pneumonia in pediatric patients. Pediatr Infect Dis J 2021;40(6):e222-9. doi:10.1097/INF.0000000000003077.

Scheeren TWL, Welte T, Saulay M, Engelhardt M, Santerre-Henriksen A, Hamed K. Early improvement in severely ill patients with pneumonia treated with ceftobiprole: a retrospective analysis of two major trials. BMC Infect Dis 2019;19(1):195. doi:10.1186/s12879-019-3820-y.

Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016;63(5):e61-111. doi:10.1093/cid/ciw353.

Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 2017;50(3):1700582. doi:10.1183/13993003.00582-2017.

Noel GJ, Strauss RS, Amsler K, Heep M, Pypstra R, Solomkin JS. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother 2008;52(1):37-44. doi:10.1128/AAC.00551-07.

Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 2008;46(5):647-55. doi:10.1086/526527.

Dryden M, Andrasevic AT, Bassetti M, Bouza E, Chastre J, Cornaglia G, et al. A European survey of antibiotic management of methicillin-resistant Staphylococcus aureus infection: current clinical opinion and practice. Clin Microbiol Infect 2010;16(suppl 1):3-30. doi:10.1111/j.1469-0691.2010.03135.x.

McDanel JS, Perencevich EN, Diekema DJ, Herwaldt LA, Smith TC, Chrischilles EA, et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis 2015;61(3):361-7. doi:10.1093/cid/civ308.

Wong D, Wong T, Romney M, Leung V. Comparative effectiveness of β-lactam versus vancomycin empiric therapy in patients with methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. Ann Clin Microbiol Antimicrob 2016;15:27. doi: 10.1186/s12941-016-0143-3.

Rello J, Rahav G, Scheeren T, Saulay M, Engelhardt M, Welte T. A pooled analysis of clinical cure and mortality with ceftobiprole medocaril versus comparators in staphylococcal bacteraemia in complicated skin infections, and community- and hospital-acquired pneumonia. Poster session presented at 26th European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, Netherlands. 2016.

Tascini C, Attanasio V, Ripa M, Carozza A, Pallotto C, Bernardo M, et al. Ceftobiprole for the treatment of infective endocarditis: a case series. J Glob Antimicrob Resist 2020;20:56-9. doi:10.1016/j.jgar.2019.07.020.

Published

2025-08-27

How to Cite

1.
Shnatepaporn P, Buddeepoot C, Promsuwan P, Bungtong I, Srisuk P, Teerawattanapong N, Singkhon P, Nuntasena K, Rittirod T. Ceftobiprole Medocaril: A New Antibiotic Option for the Treatment of MRSA Infections. SRIMEDJ [internet]. 2025 Aug. 27 [cited 2025 Dec. 29];40(4):524-43. available from: https://li01.tci-thaijo.org/index.php/SRIMEDJ/article/view/267618

Issue

Section

Review Articles