FUNDAMENTAL PRINCIPLE AND APPLICATIONS OF THERMAL ANALYSIS BY DIFFERENTIAL SCANNING CALORIMETRY IN PHARMACEUTICAL SOLID-STATE FORMULATIONS

Authors

  • Pratchaya Tipduangta Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai
  • Jakkapan Sirithunyalug

DOI:

https://doi.org/10.14456/tbps.2018.14

Keywords:

Municipal, Solid, Waste, Solid waste disposal

Abstract

Differential scanning calorimetry (DSC) is an important thermal analysis technique which is frequently used in pharmaceuticals, especially in solid-state formulations. The development of Modulated Temperature Differential Scanning Calorimetry (MTDSC) which is an extension of conventional DSC, it employs a non-linear heating rate like a sine wave or seesaw which offers a remarkable advantage of deconvoluting the heat flow signal into reversing heat flow and non-reversing heat flow by using a Fourier transform mathematic deconvolution. MTDSC can separate non-reversible thermal events such as water evaporation or polymer relaxation from reversible thermal events (glass transition temperature). Consequently, it reveals hidden thermal events and improves the resolution of detecting a glass transition temperature. Additionally, this review also focuses on the applications of conventional DSC and MTDSC in pharmaceutical solid-state formulation development including identification of polymorphism of active pharmaceutical ingredients (APIs) and their thermodynamic properties, a study of the crystallization kinetics of APIs, assessment of the interaction between APIs and excipients, and characterization of solid dispersion formulations and the long-term stability of the amorphous drug in the formulations.

References

1. Craig DQ, Reading M. Thermal analysis of pharmaceuticals: CRC press; 2006.

2. Gramaglia D, Conway BR, Kett VL, Malcolm RK, Batchelor HK. High speed DSC (hyper-DSC) as a tool to measure the solubility of a drug within a solid or semi-solid matrix. Int J Pharm. 2005;301(1):1-5.

3. Tipduangta P, Takieddin K, Fábián L, Belton P, Qi S. A New Low Melting-Point Polymorph of Fenofibrate Prepared via Talc Induced Heterogeneous Nucleation. Cryst Growth Des. 2015;15(10):5011-20.

4. Cassel RB. High Heating Rate DSC. TA Instruments Technical Publication, TA. 2002;297.

5. Clas S-D, Dalton CR, Hancock BC. Differential scanning calorimetry: applications in drug development. Pharm Sci Technol Today. 1999;2(8):311-20.

6. Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal. 1993;40(3):931-9.

7. Coleman NJ, Craig DQM. Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis. Int J Pharm. 1996;135(1–2):13-29.

8. Gmelin E, Sarge SM. Temperature, heat and heat flow rate calibration of differential scanning calorimeters. Thermochim Acta. 2000;347(1):9-13.

9. Archer DG, Rudtsch S. Enthalpy of Fusion of Indium:  A Certified Reference Material for Differential Scanning Calorimetry. J Chem Eng Data. 2003;48(5):1157-63.

10. Mullin JW. Crystallization: Butterworth-Heinemann; 2001.

11. Qi S, Weuts I, De Cort S, Stokbroekx S, Leemans R, Reading M, et al. An investigation into the crystallisation behaviour of an amorphous cryomilled pharmaceutical material above and below the glass transition temperature. J Pharm Sci. 2010;99(1):196-208.

12. Seefeldt K, Miller J, Alvarez-Núñez F, Rodríguez-Hornedo N. Crystallization pathways and kinetics of carbamazepine–nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. J Pharm Sci. 2007;96(5):1147-58.

13. Rumondor ACF, Stanford LA, Taylor LS. Effects of Polymer Type and Storage Relative Humidity on the Kinetics of Felodipine Crystallization from Amorphous Solid Dispersions. Pharm Res. 2009;26(12):2599-606.

14. Peres-Filho MJ, Gaeti MPN, de Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2011;104(1):255-60.

15. Fathy M, Hassan MA, Mohamed FA. Differential scanning calorimetry to investigate the compatibility of ciprofloxacin hydrochloride with excipients. Pharmazie. 2002;57(12):825-8.

16. Shantikumar S, Sreekanth G, SurendraNath K, JaferValli S, Satheeshkumar N. Compatibility study between sitagliptin and pharmaceutical excipients used in solid dosage forms. J Therm Anal Calorim. 2014;115(3):2423-8.

17. Jung J-Y, Yoo SD, Lee S-H, Kim K-H, Yoon D-S, Lee K-H. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int J Pharm. 1999;187(2): 209-18.

18. Marsac PJ, Li T, Taylor LS. Estimation of Drug–Polymer Miscibility and Solubility in Amorphous Solid Dispersions Using Experimentally Determined Interaction Parameters. Pharm Res. 2008;26(1):139-51.

19. Visser MR, Baert L, Klooster Gvt, Schueller L, Geldof M, Vanwelkenhuysen I, et al. Inulin solid dispersion technology to improve the absorption of the BCS Class IV drug TMC240. Eur J Pharm Biopharm. 2010;74(2):233-8.

20. Demetzos C. Differential Scanning Calorimetry (DSC): A Tool to Study the Thermal Behavior of Lipid Bilayers and Liposomal Stability. J Liposome Res. 2008;18(3):159-73.

21. Biltonen RL, Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chem Phys Lipids. 1993;64(1):129-42.

22. Bruylants G, Wouters J, Michaux C. Differential Scanning Calorimetry in Life Science: Thermodynamics, Stability, Molecular Recognition and Application in Drug Design. Curr Med Chem. 2005;12(17):2011-20.

23. Rustichelli C, Gamberini G, Ferioli V, Gamberini MC, Ficarra R, Tommasini S. Solid-state study of polymorphic drugs: carbamazepine. J Pharm Biomed Anal. 2000;23(1):41-54.

24. Ferro LJ, Miyake PS. Polymorphic crystalline forms of celecoxib. Google Patents; 2009.

25. Di Martino P, Palmieri G, Martelli S. Evidence of a metastable form of fenofibrate. Pharmazie. 2000;55(8):625-6.

26. Surov AO, Solanko KA, Bond AD, Perlovich GL, Bauer-Brandl A. Crystallization and Polymorphism of Felodipine. Cryst Growth Des. 2012;12(8):4022-30.

27. Zhou D, Schmitt EA, Zhang GG, Law D, Vyazovkin S, Wight CA, et al. Crystallization kinetics of amorphous nifedipine studied by model-fitting and model-free approaches. J Pharm Sci. 2003;92(9):1779-92.

28. Weuts I, Van Dycke F, Voorspoels J, De Cort S, Stokbroekx S, Leemans R, et al. Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: Etravirine. J Pharm Sci. 2011;100(1):260-74.

29. Qi S, Avalle P, Saklatvala R, Craig DQM. An investigation into the effects of thermal history on the crystallisation behaviour of amorphous paracetamol. Eur J Pharm Biopharm. 2008;69(1):364-71.

30. Burger A, Ramberger R. On the polymorphism of pharmaceuticals and other molecular crystals. I. Microchim Acta. 1979;72(3-4):259-71.

31. Barbas R, Martí F, Prohens R, Puigjaner C. Polymorphism of Norfloxacin:  Evidence of the Enantiotropic Relationship between Polymorphs A and B. Cryst Growth Des. 2006;6(6):1463-7.

32. Zhou D, Grant DJW. Model Dependence of the Activation Energy Derived from Nonisothermal Kinetic Data. J Phys Chem A. 2004;108(19):4239-46.

33. Taylor LS, Zografi G. Sugar–polymer hydrogen bond interactions in lyophilized amorphous mixtures. J Pharm Sci. 1998;87(12):1615-21.

34. Rumondor ACF, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of Dru-Polymer Miscibility in Amorphous Solid Dispersion Systes. Pharm Res. 2009;26(11):2523-34.

35. Daniel JSP, Veronez IP, Rodrigues LL, Trevisan MG, Garcia JS. Risperidon – Solid-state characterization and pharma-ceutical compatibility using thermal and non-thermal techniques. Thermochimica Acta. 2013;568:148-55.

36. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and Practical Approaches for Prediction of Drug–Polymer Miscibility and Solubility. Pharm Res. 2006;23(10):2417-26.

37. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. Preparation of carbamazepine–Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug–polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm. 2013;84(1):228-37.

38. Woraphatphadung T, Opanasopit P. Solid Dispersions: Technique to Enhance Solubility of Poorly Water Soluble Drug. Isan J Pharm Sci. 2015;11(2):1-15.

39. Chiou WL, Riegelman S. Pharmaceutical Applications of Solid Dispersion Systems. J Pharm Sci. 1971;60(9):1281-301.

40. Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571-86.

Downloads

Published

2018-07-26

Issue

Section

Review Articles