CORE BREAST CANCER ASSOCIATED MOLECULES: The Essence

Authors

  • Pimpicha Patmasiriwat Mahidol University Fac. Medical Technology

DOI:

https://doi.org/10.14456/tjg.2013.144

Keywords:

BRCA1, c-Myc, CyclinD1, ER-related molecules, survivin

Abstract

Various  cellular factors  in which their proliferative functions are inter-related (i.e., genes, proteins, miRNA) have been increasingly reported, both in normal cell  and cancer. Increase in  cellular  proliferative rate in cancer  is  attributed  to deregulation of  mechanisms related to cell cycle, tumor suppressor and  apoptotic control pathways. In this regard, there must be some  error occurring  within  the  functional  molecules  in one or more of these pathways. For instances, gene mutation  or amplification, chromosome aberration,  epigenetic change, abnormal increase or decrease of some miRNA  or derangement of  interacting proteins. In breast cancer, alike other cancers, cell cycle driving genes usually express at the level  higher  than normal and sometimes known as “proliferative or cancer signature” genes.  Noteworthy,  some  cancer-associated  genes  express  at  a  low  level in  cancer  and  are  not recognized  as the proliferative or cancer signature  in spite of  their obvious  roles  on  tumorigenesis. The  genes include  those  known to express  for   cell  cycle inhibitors,  intercellular  adhesive molecules, proteins which  function  for  DNA repairing  and genome stability and molecules that contribute  in apoptosis.  This review  gathers and concludes  the roles of  key molecules believed to be  breast cancer associated to date. Cumulative  knowledge  of molecular cross-talking  signals in normal mammary epithelium  guides us  to understand  how  deviated molecules  and  distorted regulations occur in breast cancer.  In addition,   no  single molecule  can provide  full  cellular  proliferative  function and this is also true in cancer. Hence, targeted therapy for cancer with highly specific inhibitor to such a single  molecule expected to be the  leading cancer actor   is generally  not guarantee of the therapeutic successful,  and  should be performed with careful consideration.

Author Biography

Pimpicha Patmasiriwat, Mahidol University Fac. Medical Technology

Fac. Medical Technology, Mahidol Univ.

Associate Professor

References

References

Adhikary, S. and Eilers, M. 2005.Transcriptional regulation and transformation by Mycproteins. Nat Rev Mol Cell Biol 6:635–645.

Alle, K.M., Henshall, S.M., Field, A.S. and Sutherlan, R.L. 1998. Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4:847–854.

Ambros, V. 2004. The functions of animal microRNAs. Nature 431:350-355

Ambrosini,G., Adida,C. and Altieri,D,C.1997.A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med3: 917–921.

Anzick, S. L., Kononen J., Walker R. L., Azorsa D. O., Tanner M. M., Guan X. Y., Sauter G., Kallioniemi O. P., Trent J. M. and Meltzer P. S. 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965-968.

Calin, G.A., Sevignani, C., Dumitru ,C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M. and Croce, C.M. 2004. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999-3004.

Charong, N., Patmasiriwat, P. andZenklusen, J.C. 2011. Localization and characterization of ST7 in Cancer. J Cancer Res Clin Oncol 137:89–97.

Ciocca, D.R. and Fanelli, M. 1997. Estrogen receptor and cell proliferation in breast cancer.TEM 8:319.

Clark, G.M. and McGuire, W.L. 1991. Follow-up study of HER-2/neuamplification in primary breast cancer. Cancer Res 51: 944–948.

Colston, K.W., Berger, U. and Coombes, R.C. 1989. Possible role for vitamin D in controlling breast cancer cell proliferation. Lancet 1: 188–191.

Croce, C.M. 1993. Molecular biology of lymphoma. Seminar oncol 20:31–46.

Cullen, B.R. 2004. Transcription and processing of human microRNA precursors. Mol Cell 16:861-865

Dakeng, S., Duangmano, S., Jiratchariyakul, W., U-Pratya, Y., Bogler, O. andPatmasiriwat, P. 2012. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. J Cell Biochem 113:49–60.

Denli, A.M., Tops, B.B., Plaste, R.H., Ketting, R.F. and Hannon, G.J. 2004. Processing of primary microRNAs by the microprocessor complex. Nature 432:231-235.

Diaz, N., Minton, S., Cox, C., Bowman, T., Gritsko, T., Garcia, R., Eweis, I., Wloch, M., Livingston, S., Seijo, E., Cantor, A., Lee, J.H., Beam, C.A., Sullivan, D., Jove,R.andMuro-Cacho C.A. 1999. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12:20–28.

Dougall, W.C., Qian, X., Peterson, N.C., Miller, M.J., Samanta, A. and Greene, M.I. 1994.The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 9:2109–2123.

Driscoll, M.D., Sathya, G., Muyan, M., Klinge,C.M., Hilf, R. and Bambara, R.A. 1998. Sequence requirements for estrogen receptor binding to estrogen response elements. J Biol Chem 273:29321–29330.

Duangmano, S., Dakeng, S., Jiratchariyakul, W., Suksamrarn, A., Smith, D.R.and Patmasiriwat P. 2010. Antiproliferative effects of cucurbitacin B in breast cancer cells: Down-regulation of the c-Myc/hTERT/Telomerase pathway and obstruction of the cell cycle. Int J Mol Sci 11:5323–5338.

Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., Lund, E. and Dahlberg, J.E. 2005. Accumulation of miR-155 and BIC RNA in human B-cell lymphomas. Proc Natl Acad Sci USA 102:3627-3632.

Elgort, M.G., Zou, A., Marschke, K.B. and Allegretto, E.A. 1996. Estrogen and estrogen receptor antagonists stimulate transcription from the human retinoic acid receptor-alpha 1 promoter via a novel sequence.Mol Endocrinol 10:477–487.

Enmark, E. andGustafsson, J.A. 1999. Oestrogen receptors – an overview. J Int Med 246:133–138.

Fan, S., Wang, J.A., Yuan R, Ma. Y., Meng, Q., Erdos, M.R., Pestell, R.G., Yuan, F., Auborn, K.J., Goldberg, I.D. and Rosen, E.M. 1999. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284:1354–1356.

Fukuda,S. and Pelus, L.M. 2006. Survivin, a cancer target with an emerging role in normal adults tissues. Mol Cancer Ther 5: 1087–1098.

Greenberg, R.A., O'Hagan, R.C., Deng, H., Xiao, Q., Hann, S.R., Adams, R.R., Lichtsteiner, S., Chin, L., Morin, G.B. and DePinho, R.A. 1999. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18:1219–1226.

Gregory, R.I., Ya, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N. and Shiekhattar, R. 2004. The microprocessor complex mediates the genesis of microRNAs. Nature 432:235-240

Grushko, T.A., Dignam, J.J., Das, S., Blackwood, A.M., Perou, C.M., Ridderstrale, K.K.,Anderson, K.N., Wei, M.J., Adams, A.J., Hagos, F.G., Sveen, L., Lynch, H.T., Weber, B.L. andOlopade, O.I. 2004. MYC is amplified in BRCA1-associated breast cancers. Clin Cancer Res 10:499–507.

Gudas, J.M., Nguyen, H., Li, T. and Cowan, K.H. 1995. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res 55:4561–4565.

Guy, M., Lowe, L.C., Bretherton, D., Mansi, J.L., Peckiff, C., Bliss, J.,Wilson, R.G., Thomas, V. andColston, K.W. 2004. Vitamin D Receptor gene polymorphisms and breast cancer risk. Clin Cancer Res 10:5472–5481.

Halachmi, S., Marden, E., Martin, G., MacKay, H., Abbondanza, C. and Brown, M. 1994. Estrogen receptor - associated protein:possible mediators of hormone–induced transcription. Science 264:1455–1458.

Hanahan, D. and Weinberg, R.A. 2000. Thehallmarks of cancer. Cell 100: 57–70.

Hansen, C.M., Hamberg, K.J., Binderup, E. andBinderup, L. 2000. Seocalcitol (EB1089) A vitamin D analogue of anti cancerpotential . Background, design, synthesis, pre-clinic and clinical evaluation. Curr Pharm Design 6: 803–828.

Hawkims, R.A., Killen, E.R., Jack, W.J. and Chetty, U. 1991. Epidermal growth factor receptors in intracranial and breast tumors: Their clinical significance. Br J Cancer 63:553–560.

Hossain, A., Kuo, M.T. and Saunders, G.F. 2006. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26:8191–8201.

Ingvarsson, S.1999. Molecular genetics of breast cancer progression. Semin Cancer Biol 9:277–288.

Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri , E., Pedriali , M., Fabbri, M., Campiglio , M., Ménard , S., Palazzo, J.P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin , G.A., Querzoli, P., Negrini , M. and Croce, C.M. 2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070.

Jain, A., Clin, K., Borresen-Dale, A.L., Erikstein, B.K., EynsteinLonning, P., Kaaresen, R. and Gray, J.W. 2001. Quantitative analysis of chromosomal CGH in human breast tumors associated copy number abnormalities with p53 status and patient survival. Proc Natl Acad Sci USA 98:7952–7957.

Jensen, E.V. 1993. Overview of the nuclear receptor family. In:Parker M.C., editor. London Academic Press pp.1–13.

Kato, S., Tora, L., Yamauchi, J., Masushige, S., Bellard, M. andChambon, P. 1992. A far upstream estrogen response element of the ovalbumin gene contains several half-palindromic 5’-TACC-3’ motif acting synergistically. Cell 68:731–742.

Kenny, F.S., Hui, R., Musgrove, E.A., Gee, J.M., Blamey, R.W., Nicholson, R.I., Sutherland, R.L. and Robertson, J.F. 1999. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res 5:2069–2076.

Khan, S., Aspe, J.R., Asumen, M.G., Almaguel, F., Odumosu, O., Acevedo-Martinez, S., De Leon, M., Langridge, W.H. and Wall, N.R. 2009. Extracellular, cell permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. Br J Cancer 100:1073–1086.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. and Kim, V.N. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415-419.

Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051-4060.

Lee, Y., Jeon, K., Lee, J.T., Kim, S. and Kim, V.N. 2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663-4670.

Li,F., Ambrosini,G., Chu,E.Y., Plescia, J., Tognin, S., Marchisio, P.C. andAltieri, D.C.1998.Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–584.

Li, H. and Weinstein, I.B. 2006. Protein kinase Cβ enhances growth and expression of cyclin D1 in human breast cancer cells. Cancer Res 66:11399–11408.

Li, H., Lu, T.H. and Avraham, H. 2002. A novel tricomplex of BRCA1, Nim1 and c-Myc inhibits c-Myc-induced human telomerase reverse transcriptase gene (hTERT) promoter activity in breast cancer. J Biol Chem 277:20965–20973.

Liao, D.J. and Dickinson, R.B. 2000.c-Myc in breast cancer. Endocr Relat Cancer 7:143–164.

Lin, S.Y., Xia, W., Wang, J.C., Kwong, K.Y., Spohn, B., Wen, Y., Pestell, R.G. and Hung, M.C. 2000. β-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progresssion.Proc Natl Acad Sci USA 97:4262–4266.

Louie, M.C., Zo, J.X., Rabinovich, A.and Chen, H.W. 2004. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 24:5157-5171.

Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R. and Golub, T.R. 2005. MicroRNA expression profiles classify human cancers. Nature 435:834-838.

Lund, E., Guttinger, S., Calado, A., Dahlberg, J. and Kutay, U. 2004. Nuclear export of microRNA precursors. Science 303:95-98

Matsumura, I., Tanaka, H. and Kanakura, Y. 2003. E2F1 and c-Myc in cell growth anddeath.Cell Cycle 2:333–338.

McNeil, C.M., Sergio, C.M., Anderson, L.R., Inman, C.K., Eggleton, S.A., Murphy, N.C., Millar, E.K., Crea, P., Kench, J.G., Alles, M.C., Gardiner-Garden, M., Ormandy, C.J., Butt, A.J.,Henshall, S.M., Musgrove, E.A. and Sutherland, R.L. 2006. c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol 102:147–155.

Michael, M.Z., O'Connor, S.M., van Holst Pellekaan, N.G., Young, G.P. and James, R.J. 2003. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882-891

Monzo, M., Rosell, R., Felip, E., Astudillo, J., Sanchez, J.J., Maestre, J., Martín, C., Font, A., Barnadas, A. and Abad, A. 1999. A novel anti-apoptosis gene: Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J Clin Oncol 17:2100–2104.

Muller, W.J., Sinn, E., Wallace, R., Pattengale, P.K. andLeder, P. 1988. Single-step induction of mammary adenocarinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

Mutoh, H., Kume, K., Sato, S., Kato, S. and Shimizu, T. 1994. Positive and negative regulations of human platelet-activating factor receptor transcript 2 (tissue-type) by estrogen and TGF-beta 1. Biochem Biophys Res Commun 205:1130–1136.

O-charoenrat, P. 2008. Molecular genetics of cancers (Part I). Siriraj Med J 60:288-294.

Patmasiriwat, P. 2008. Molecular genetics of cancers (Part II): Familial cancers. Siriraj Med J 60:295–300.

Pelengaris, S. and Khan, M. 2003. The many faces of c-MYC. Arch Biochem Biophys 416:129–136.

Pestell, R.G., Albanese, C., Benlens, A.T., Segall, J.F., Lee, B.J. and Arnold, A. 1999.The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation.Endocr Rev 20: 501–534.

Polack, A., Feederle, R., Klobeck, G. and Hortnagel, K. 1993. Regulatory elements in the immunoglobulin kappa locus induce c-myc activation and the promoter shift in Burkitt's lymphoma cells. EMBO J 12:3913–3920.

Pongsavee, M., Patmasiriwat, P. and Saunders, G.F. 2009. Functional analysis of familial Asp67 Glu and Thr1051Ser BRCA1 mutations in breast/ovarian carcinogenesis.Int J Mol Sci 10:4187–4197.

Promkan, M., Liu, G., Patmasiriwat, P. and Chakrabarty,S. 2009. BRCA1 modulates malignant cell behavior, the expression of survivin and chemosensitivity in human breast cancer cells. Int J Cancer 125:2820–2828.

Ross, J.S. and Fletcher, J.A. 1999. HER2/neu gene and protein in breast cancer. Am J Clin Pathol 112: S53–67.

Rowlands, T.M., Pechenkina, I.V., Hatsell, S.and Cowin, P. 2004.β-catenin and cyclin D1 connecting development to breast cancer. Cell Cycle 3:145–148.

Sah, N.K., Khan, Z., Khan, G.J. and Bisen, P.S. 2006. Structural, functional and therapeutic biology of survivin. Cancer Lett 244:164–171.

Schechter, A.L., Stern, D.F., Vaidyanathan, L., Decker, S.J., Drebin, J.A., Greene, M.I. and Weinberg, R.A.1984. The neu oncogene: an erb-B-related gene encoding a185000-Mr, tumour antigen. Nature 312: 513–516.

Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., and McGuire, W.L.1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182.

Tora, L., Gaub, M.P., Mader, S., Dierich, A., Bellard, M. andChambon, P. 1988. The transcriptional activation function located in the hormone-binding domain of the human oestrogen receptor is not encoded in a single exon. EMBO J 7:3771–3778.

Torres-Arzayus, M.I., Font de Mora, J., Yuan, J., Vazquez, F., Bronson, R., Rue, M., Sellers, W.R. and Brown, M. 2004. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIBI as an oncogene. Cancer Cell 6:263–274.

Vanderlaag, K.E., Hudak, S., Bald, L., Fayadat-Dilman, L., Sathe, M., Grein, J. and Janatpour, M.J. 2010. Anterior gradient-2 plays a critical role in breast cancer cell growth and survival by modulating cyclin D1, estrogen receptor-α and surviving. Breast Cancer Res 12:R32 doi:10.1186/bcr2586

Vos, C.B., TerHaar, N.T., Peterse, J.L., Cornelisse, C.J.andvan de Vijver, M.J. 1999. Cyclin D1 gene amplification and overexpression are present in ductal carcinoma in situ of the breast. J Pathol 187:279–284.

Wang, C., Fan, S., Li, Z., Fu, M., Rao, M., Ma, Y.,Lisanti, M.P., Albanese, C., Katzenellenbogen, B.S., Kushner, P.J., Weber, B., Rosen, E.M. andPestell, R.G. 2005.Cyclin D1 antagonizes BRCA1 repression of estrogen receptor- activity. Cancer Res 65:6557–6567.

Wang, C., Mayer, J.A., Mazumdar, A., Fertuck, K., Kim, H., Brown, M.and Brown, P.H. 2011. Estrogen induces c-mycgene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Mol Endocrinol 25:1537–1538.

Weinberg, R.A. 1995. The retinoblastoma protein and cell cycle control. Cell 81:323–330.

Wu, K.J., Grandori, C., Amacker, M., Simon-Vermot, N., Polack, A., Lingner, J.and Dalla-Favera, R. 1999. Direct activation of TERT transcription by c-MYC. Nat Genet 21:220–224.

Yanatatsaneejit, P. and Khowutthitham, S. 2012. Cancer: secret in genetic code. Thai J Genet 5:1-20.

Yi, R., Qin, Y., Macara, I.G. and Cullen, B.R. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011-3016.

Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E. and Filipowicz, W. 2004. Single processing center models for human Dicer and bacterial RNase III. Cell 118:57-68.

หนังสือแนะนำเพิ่มเติม : พิมพิชฌา ปัทมสิริวัฒน์. 2553. พันธุศาสตร์มะเร็งเต้านม. กรุงเทพฯ: โรงพิมพ์บริษัท พี.เอ.ลีฟวิ่ง จำกัด; 388 หน้า.

Downloads

Published

2013-12-31

Issue

Section

Review Articles