พันธุศาสตร์เชิงเคมี: องค์ความรู้ทางเคมีสู่ศักราชใหม่แห่งการวิจัยทางพันธุศาสตร์ (Chemical genetics: Entering the new era of genetics research with chemistry)

Authors

  • Thanit Praneenararat Department of Chemistry, Faculty of Science, Chulalongkorn University

DOI:

https://doi.org/10.14456/tjg.2014.7

Keywords:

chemical genetics, chemical biology, antimalarial, protein-protein interaction

Abstract

การวิจัยและค้นหาองค์ความรู้ใหม่ทางวิทยาศาสตร์ที่เป็นการเชื่อมโยงศาสตร์พื้นฐาน เช่น ชีววิทยาและเคมี กำลังเป็นที่สนใจอย่างมากในปัจจุบัน ซึ่งศาสตร์หนึ่งที่ได้รับประโยชน์โดยตรงจากการนำองค์ความรู้และเทคนิควิธีการทางเคมีมาใช้ ได้แก่ พันธุศาสตร์เชิงเคมี โดยศาสตร์นี้พัฒนาขึ้นเพื่อศึกษาพันธุศาสตร์ในบางประเด็นซึ่งเทคนิคแบบดั้งเดิมไม่สามารถกระทำได้ ดังนั้นการประยุกต์ใช้ทั้งพันธุศาสตร์แบบดั้งเดิมและเชิงเคมีร่วมกันย่อมจะนำไปสู่การสังเคราะห์องค์ความรู้เกี่ยวกับกระบวนการพื้นฐานในสิ่งมีชีวิตต่างๆ ได้เป็นอย่างดี นอกจากนี้ พันธุศาสตร์เชิงเคมียังมีศักยภาพที่จะนำไปสู่การพัฒนายารักษาโรคในรูปแบบใหม่ได้อีกด้วย เช่น การค้นหาสารประกอบที่ยับยั้งอันตรกิริยาระหว่างโปรตีนใน human papillomavirus และการค้นหาสารออกฤทธิ์ต้านเชื้อมาลาเรีย

Research at the interface of chemistry and biology has recently gained increasing interest from the scientific communities. One of the most active fields in this research theme is chemical genetics, a study aimed to utilize chemical tools and knowledge to study genetics in certain ways that traditional methods cannot offer. Combining the power of traditional genetics and chemical genetics will no doubt pave the way to new insights in the fundamental processes of living organisms. Furthermore, chemical genetics can have an impact in discovering new drugs with novel modes of actions. Two examples including the development of inhibitors for protein-protein interaction in human papillomavirus and the development of novel antimalarial agents are highlighted.

References

Altmann KH, Buchner J, Kessler H, Diederich F, Krautler B, Lippard S, Liskamp R, Muller K, Nolan EM, Samori B, et al. (2009) The State of the Art of Chemical Biology. Chembiochem 10: 16–29.

Baker M (2013) Fragment-based lead discovery grows up. Nat Rev Drug Discov 12: 5–10.

Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, et al. (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci U S A 100: 7977–7982.

Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43: 46–58.

Connor CJO, Laraia L, Spring DR (2011) Chemical genetics. Chem Soc Rev 40: 4332–4345.

Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31: 2235–2246.

Fenteany G, Schreiber SL (1998) Lactacystin, proteasome function, and cell fate. J Biol Chem 273: 8545–8548.

Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of Proteasome Activities and Subunit-Specific Amino-Terminal Threonine Modification by Lactacystin. Science 268: 726–731.

Galloway WRJD, Isidro-Llobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 1: 80.

Gamo F-J, Sanz L, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, Vanderwall D, Green D, Kumar V, Hasan S, et al. (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465: 305–310.

Goudreau N, Cameron D, Déziel R, Haché B, Jakalian A, Malenfant E, Naud J, Ogilvie W, O'Meara J, White P, et al. (2007) Optimization and determination of the absolute configuration of a series of potent inhibitors of human papillomavirus type-11 E1-E2 protein-protein interaction: a combined medicinal chemistry, NMR and computational chemistry approach. Biorg Med Chem 15: 2690–2700.

Guiguemde W, Shelat A, Bouck D, Duffy S, Crowther G, Davis P, Smithson D, Connelly M, Clark J, Zhu F, et al. (2010) Chemical genetics of Plasmodium falciparum. Nature 465: 311–315.

Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6: 211–219.

Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci USA 93: 13–20.

Joseph-McCarthy D, Campbell AJ, Kern G, Moustakas D (2014) Fragment-Based Lead Discovery and Design. J Chem Inf Model 10.1021/ci400731w.

Kawasumi M, Nghiem P (2007) Chemical genetics: elucidating biological systems with small-molecule compounds. J Investig Dermatol 127: 1577–1584.

Koehler AN, Shamji AF, Schreiber SL (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J Am Chem Soc 125: 8420–8421.

Lapinsky DJ (2012) Tandem photoaffinity labeling–bioorthogonal conjugation in medicinal chemistry. Biorg Med Chem 20: 6237–6247.

Lehár J, Stockwell B, Giaever G, Nislow C (2008) Combination chemical genetics. Nat Chem Biol 4: 674–681.

Leslie BJ, Hergenrother PJ (2008) Identification of the cellular targets of bioactive small organic molecules using affinity reagents. Chem Soc Rev 37: 1347–1360.

Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1: 337–341.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 64: 4–17.

Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285: 2177–2198.

Lo MMC, Neumann CS, Nagayama S, Perlstein EO, Schreiber SL (2004) A library of spirooxindoles based on a stereoselective three-component coupling reaction. J Am Chem Soc 126: 16077–16086.

Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao GQ, Barluenga S, Mitchell HJ (2000) Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis

of benzopyrans. J Am Chem Soc 122: 9939–9953.

O'Connor CJ, Beckmann HSG, Spring DR (2012) Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem Soc Rev 41: 4444–4456.

Ortholand JY, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8: 271–280.

Peterson RT (2008) Chemical biology and the limits of reductionism. Nat Chem Biol 4: 635–638.

Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, Nagle A, Adrián F, Matzen J, Anderson P, et al. (2008) In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A 105: 9059–9064.

Robinson A, Thomas GL, Spandl RJ, Welch M, Spring DR (2008) Gemmacin B: bringing diversity back into focus. Org Biomol Chem 6: 2978–2981.

Schenone M, Dancik V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9: 232–240.

Shoichet BK (2013) Drug Discovery Nature's Pieces. Nat Chem 5: 9–10.

Spring DR (2005) Chemical genetics to chemical genomics: small molecules offer big insights. Chem Soc Rev 34: 472–482.

Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299: 1743–1747.

Walsh DP, Chang YT (2006) Chemical genetics. Chem Rev 106: 2476–2530.

Wang Y, Coulombe R, Cameron DR, Thauvette L, Massariol MJ, Amon LM, Fink D, Titolo S, Welchner E, Yoakim C, et al. (2004) Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. J Biol Chem 279: 6976–6985.

Wells J, McClendon C (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450: 1001–1009.

White P, Titolo S, Brault K, Thauvette L, Pelletier A, Welchner E, Bourgon L, Doyon L, Ogilvie W, Yoakim C, et al. (2003) Inhibition of human papillomavirus DNA replication by small molecule antagonists of the E1-E2 protein interaction. J Biol Chem 278: 26765–26772.

Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129–138.

Yeh JRJ, Crews CM (2003) Chemical genetics: Adding to the developmental biology toolbox. Dev Cell 5: 11–19.

Yoakim C, Ogilvie WW, Goudreau N, Naud J, Haché B, O'Meara JA, Cordingley MG, Archambault J, White PW (2003) Discovery of the first series of inhibitors of human papillomavirus type 11: inhibition of the assembly of the E1–E2–Origin DNA complex. Bioorg Med Chem Lett 13: 2539–2541.

Zheng XFS, Chan TF (2002) Chemical genomics in the global study of protein functions. Drug Discov Today 7: 197–205.

World Malaria Report 2013, http://www.who.int/malaria/ publications/world_malaria_report_2013/en/ (March 2014)

Open Access Malaria Box, http://www.mmv.org/ malariabox/ (March 2014)

Downloads

Published

2014-05-04

Issue

Section

Review Articles