ฐานข้อมูลความหลากหลายทางพันธุกรรมในคนไทยแบบสนิปและซีเอ็นวี

Authors

  • Anunchai Assawamakin Biostatistics and Informatics Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
  • Chumpol Ngamphiw Biostatistics and Informatics Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
  • Oranud Praditsap Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
  • Chanin Linwongse Division of Molecular Genetics, Department of Research and Development; Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
  • Sissades Tongsima Biostatistics and Informatics Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand

DOI:

https://doi.org/10.14456/tjg.2010.9

Keywords:

SNPs, CNV, Thais, Genetic polymorphism

Abstract

The determination of association between single nucleotide polymorphisms (SNPs) and copy number variations (CNV) and the risks of development of diseases will be useful in development of predictive system based on genetic makeup of individual. Moreover, such polymorphisms can also be used in refining the efficacy and safety of drugs which are different amongst people. To identify genetic risks of common diseases, the information of linkage disequilibrium patterns in the study population is needed for estimation of sample sizes and averting genotyping of non-polymorphic markers in the study population. This information will particularly be very important for genotype-phenotype association. This project aims to determine SNPs and CNVs in Thai population by using 5th generation Affymetrix SNP genotyping arrays, each array contains approximately 500,000 known SNP genotyping positions. Furthermore, this analysis offers genetic comparative analysis of Thais against other NCBI dbSNP, Pan-Asian SNP Database, International HapMap Project, JSNP and Database of Genomic Variant. The genotypic information is made available for public access at http://www.biotec.or.th/thaisnp2.

References

Barrett, J.C., Fry, B., Maller, J. and Daly, M.J. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263-5.

Bengtsson, H., Simpson, K., Bullard, J. and Hansen K. 2008. Aroma.affymetrix: A generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory. Tech Report #745, Department of Statistics, University of California, Berkeley.

Bora, N.S., Kaliappan, S., Jha, P., Xu, Q., Sivasankar, B., Harris, C.L., Morgan, B.P. and Bora, P.S. 2007. CD59, a complement regulatory protein, controls choroidal neovascularization in a mouse model of wet-type age-related macular degeneration. J Immunol 178:1783-1790.

Estivill, X. and Armengol, L. 2007. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet 3: 1787-1799.

Haga, H., Yamada, R., Ohnishi, Y., Nakamura, Y. and Tanaka, T. 2002. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome Single-nucleotide polymorphism. J Hum Genet 47: 605-610.

Hirakawa, M., Tanaka, T., Hashimoto, Y., Kuroda, M., Takagi, T. and Nakamura, Y. 2002. JSNP: a database of common gene variations in the Japanese population. Nucleic Acids Res 30:158-162.

International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851-861.

Lachman, H.M., Pedrosa, E., Petruolo, O.A., Cockerham, M., Papolos, A., Novak, T., Papolos, D.F. and Stopkova, P. 2007. Increase in GSK3beta gene copy number variation in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 144: 259-265.

Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y.H., Hicks, J., Spence, S.J., Lee, A.T., Puura, K., Lehtimäki, T., Ledbetter, D., Gregersen, P.K., Bregman, J., Sutcliffe, J.S., Jobanputra, V., Chung, W., Warburton, D., King, M.C., Skuse, D., Geschwind, D.H., Gilliam, T.C., Ye, K. and Wigler, M. 2007. Strong association of de novo copy number mutations with autism. Science 316: 445-9.

Stein, L.D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A., Nickerson, E., Stajich, J.E., Harris, T.W., Arva, A. and Lewis, S. 2002. The generic genome browser: a building block for a model organism system database. Genome Res 12:1599-610.

Downloads

Published

2012-07-12

Issue

Section

Research Articles